《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > IEKF濾波在移動機器人定位中的應用
IEKF濾波在移動機器人定位中的應用
來源:電子技術應用2013年第2期
強敏利, 張萬緒
西北大學 信息科學與技術學院, 陜西 西安 710127
摘要: 針對EKF中觀測噪聲方差估計不準確導致濾波器性能下降甚至發(fā)散的問題,提出了基于環(huán)境特征的迭代擴展卡爾曼濾波(IEKF)融合算法。該算法融合了里程計采集的機器人內部數據和激光雷達傳感器采集的外部環(huán)境特征,在測量更新階段多次迭代狀態(tài)估計值并對機器人的位姿進行修正,減少了非線性誤差,提高了定位精度。
中圖分類號: TP242
文獻標識碼: A
文章編號: 0258-7998(2013)02-0074-04
Application of iterated extended Kalman filtering in mobile robot localization
Qiang Minli, Zhang Wanxu
College of Information Science and Technology, Northwest University, Xi′an 710127,China
Abstract: To address the problem of performance degradation and even divergence of EKF caused by poor estimates of the observation noise,an iterated extended Kalman filter fusion algorithm based environment characteristic is proposed. This algorithm combined with the robot internal data collected by odometer and external environment characteristic collected by laser radar sensor. In the measurement of update stage, the state estimation is iterated many times to correct the robot position, and the nonlinear error is reduced and localization accuracy is improved.
Key words : self-localization; mobile robot; Kalman filtering; information fusion

    隨著電子技術和計算機技術的快速發(fā)展及機器人定位精度的不斷提高,智能移動機器人的應用越來越廣泛。現已廣泛應用于工業(yè)生產、海空探索、軍事、家庭和一些服務行業(yè)。

     精確的定位是移動機器人安全、有效地完成任務的關鍵和前提[1]。現有的大多數定位方法是通過機器自身攜帶的傳感器實時感知自身所處環(huán)境的位置和周圍信息,并不斷修正自身狀態(tài),然后在有障礙物的環(huán)境中有效地完成任務。
    卡爾曼濾波[2]是由一系列遞歸數學公式描述的。它們提供了一種高效可計算的方法來估計過程的狀態(tài),并使估計均方誤差最小,應用廣泛且功能強大。但如果模型或系統(tǒng)噪聲特性估計與實際不符,則會降低濾波器的精度甚至導致濾波器發(fā)散。為了解決此問題,本文結合外部環(huán)境特征信息并在測量更新階段多次迭代濾波估計值,減小定位誤差,提高系統(tǒng)穩(wěn)定性。
1 系統(tǒng)模型
    本文的研究對象是一種三輪智能移動機器人,該機器人的其中一輪為萬向輪,另外兩輪為驅動輪。兩個驅動輪上裝有光電碼盤。利用驅動輪的碼盤數據,可以計算機器人的動態(tài)位置信息。機器人的正前方裝有激光雷達測距傳感器,可以采集已知環(huán)境中的路標信息。準確的系統(tǒng)模型直接影響著機器人的定位精度。因此,本文首先根據機器人信息建立了坐標系統(tǒng)模型、機器人運動模型和傳感器觀測模型。


1.3 觀測模型
    根據機器人運動模型估計的位姿,只是實際位姿的一個粗略的估計,由于輪子打滑等原因存在一定誤差,而且隨著機器人移動時間的增加,誤差將越來越大,最終移動機器人將偏離自己的軌跡。為了修正誤差,移動機器人需要利用激光雷達傳感器,對路標進行觀測,修正自身的位姿。
    本文利用激光雷達測距傳感器的觀測信息來修正機器人自身的位置。機器人在運動過程中,利用測距傳感器掃描周圍環(huán)境,獲得的觀測量z(k)是周圍環(huán)境路標相對于傳感器的距離和方向,然后根據先驗的地圖信息確定自身的實際位置。在定位問題的狀態(tài)空間描述中可以表示為:



 

 


    眾所周知,迭代次數越多,計算量越大,時間越長。因此,實際機器人定位中,針對實際硬件條件,可以選取合適的迭代次數提高算法的定位精度,增強算法的收斂穩(wěn)定性。
    由兩次實驗結果可以看出,IEKF算法估計的路標特征和機器人路徑與實際基本相符。從實驗所得的誤差數據可以看出,相對于機器人自身的空間大小,誤差在可接受的范圍之內,表明該定位系統(tǒng)定位精度較高,具有較高的可靠性。
    本文針對機器人定位精度問題,在傳統(tǒng)卡爾曼濾波的基礎上,提出一種迭代擴展卡爾曼濾波算法。該算法相對于傳統(tǒng)卡爾曼濾波算法,在狀態(tài)更新階段采用多次迭代更新,減少了系統(tǒng)線性化時所帶來的誤差,并將該算法與多傳感器信息融合技術結合應用于有路標的機器人定位。模型簡單、存儲量小。實驗結果表明該算法在保證實時性的同時較大地提高了定位精度,能夠滿足機器人高精度及可靠性等方面的要求。
參考文獻
[1] 丁偉,孫華,曾建輝.基于多傳感器信息融合的移動機器人導航綜述[J].傳感器與微系統(tǒng),2006,25(7):1-3.
[2] 石杏喜,趙春霞.基于概率的移動機器人SLAM算法框架[J].計算機工程,2010,36(2):31-32.
[3] 曾健平, 王保同, 謝海情. 自主移動機器人定位系統(tǒng) Kalman濾波算法改進[J].計算機應用研究,2011,28(5): 1710-1712.
[4] 李良群,姬紅兵,羅軍輝.迭代擴展卡爾曼粒子濾波器 [J].西安電子科技大學學報,2007,34(2):233-238.
[5] 陳小寧,黃玉清,楊佳. 多傳感器信息融合在移動機器人定位中的應用[J].傳感器與微系統(tǒng),2008,27(6):110-113.
[6] 鄒智榮,蔡自興,陳白帆.移動機器人SLAM中一種混合 數據關聯(lián)方法[J]. 小型微型計算機系統(tǒng),2011,32(7):1341-1343.

此內容為AET網站原創(chuàng),未經授權禁止轉載。
主站蜘蛛池模板: 2020国产精品永久在线观看 | 欧美视频在线第一页 | 国产香蕉久久精品综合网 | 亚洲一区二区三区四区在线 | 天天操天天操 | 欧美图片在线视频 | 国产第一浮力影院新路线 | 国产一卡二卡 | 亚洲第一a亚洲 | 久久综合九色综合97婷婷女人 | 黄a视频在线观看 | 亚洲第一欧美 | 成人黄色片在线观看 | 日本大片成人免费网址 | 黄色小视频免费观看 | 色就色欧美综合偷拍区a | 黄色小视频在线观看 | 日韩免费视频一区二区 | 特级毛片s级全部免费 | 91精品国产三级在线观看 | 亚洲va欧美va | 亚洲无线码一区二区三区在线观看 | 热99re久久精品2久久久 | www.国产精品视频 | 最新精品在线视频 | 深夜福利视频网 | 狠狠干狠狠干 | 皮皮在线精品亚洲 | 国产成人一区二区三中文 | 亚洲视频中文 | 欧美在线 | 亚洲 | 天天好比网| 黄色网址视频在线播放 | 亚洲欧美小视频 | 国产一级视频免费 | 欧洲做视频在线观看 | 精品国产亚洲人成在线 | 福利片在线观看免费高清视频 | 国产成人免费高清视频网址 | 天天摸天天做 | 妞妞影视一二三区 |