《電子技術應用》
您所在的位置:首頁 > 電源技術 > 業界動態 > 白光LED主要技術路線解析

白光LED主要技術路線解析

2020-03-29
來源:中國低碳網

    在科技高度發展的今天,電子產品的更新換代越來越快,LED燈的技術也在不斷發展,為我們的城市裝飾得五顏六色。本期的主題是以LED照明為中心開展的,關于LED的白光技術路線,你們都了解多少?主要分為三種,分別為①藍光LED+熒光粉型; ②RGB LED 型; ③紫外光LED +熒光粉型。

    1、藍光-LED芯片 + 黃綠熒光粉型包括多色熒光粉衍生等型

    黃綠熒光粉層吸收一部分LED芯片的藍光產生光致發光,另一部分來自LED芯片的藍光透射出熒光粉層后與熒光粉發出的黃綠光在空間各點匯合,紅綠藍三色光混合組成白光;這種方式中,外量子效率之一的熒光粉光致發光轉換效率的最高理論值將不超過75%;而芯片出光的提取率最高也只能達到70%左右,所以,理論上藍光型白光LED光效最高將不超過340 Lm/W,前幾年CREE達到303Lm/W,如果測試結果準確的話是值得慶賀的。

    

5e7d60156e4df.png

    2、紅綠藍三基色組合RGB LED 型包括RGBW- LED型等

    R-LED(紅)+ G-LED(綠)+ B- LED(藍)三個發光二極管組合在一起,所發出的紅綠藍三基色光在空間直接混合組成白光。要想用這種方式產生高光效白光,首先各色LED特別是綠色LED必須是高效光源,這從“等能白光”中綠光約占69%可見。而目前,藍光和紅光LED的光效已經做到很高了,內量子效率分別超過90%和95%,但是綠光LED的內量子效率卻遠遠落后。這種以GaN為主的LED綠光效率不高的現象被稱為“綠光缺口”。

    其主要原因是綠光LED還沒找到專屬自己的外延材料,現有磷砷氮化物系列材料在黃綠色譜范圍里效率都很低,而采用紅光或藍光的外延材料制作綠光LED,在較低的電流密度條件下,因為沒有熒光粉轉換損耗,綠光LED要比藍光+熒光粉型綠光的光效更高,據報道在 1mA電流條件下其發光效率達到291Lm/W。但在較大電流下Droop效應導致的綠光的光效下降很顯著,當電流密度增加,光效下降很快,在350mA電流下,光效是108Lm/W,在1A條件下,光效下降到66Lm/W。

    對于III族磷化物而言,發射光到綠色波段成為了材料系統的基礎障礙。改變AlInGaP的成分讓它發綠光,而不是紅光、橙色或者黃色―造成載波限制不充分,是由于材料系統相對低的能隙,排除有效的輻射復合。

    相比之下,III族氮化物要達到高效難度更大,但困難并不是無法逾越的。用這個系統,將光延伸到綠光波段,會造成效率降低的兩個因素是:外部量子效率和電效率的下降。外部量子效率下降來源于盡管綠光帶隙更低,但綠光LED采用GaN的高正向電壓,使得電源轉換率下降。第二個缺點是綠光LED隨注入電流密度增大而下降,被droop效應所困。Droop效應也出現在藍光 LED中,但在綠色LED中影響更甚,導致常規的工作電流效率更低。然而,造成droop效應原因猜測很多,不僅僅只有俄歇復合這一種一其中包括了錯位、載體溢出或者電子泄漏。后者是由高壓內部電場增強的。

    因此,提高綠光LED光效的途徑:一方面研究現有外延材料條件下如何減小Droop效應來提升光效;第二方面,用藍光LED加綠色熒光粉的光致發光轉換發出綠光,該方法可以得到高光效綠光,理論上來說可達到高于目前的白光光效,它屬于非自發綠光,其光譜展寬所導致的色純度下降,對于顯示來說是不利的,但對于普通照明來說沒有問題,該方式獲得的綠光光效有大于340 Lm/W的可能性,但組合白光后仍然不會超過340 Lm/W;第三,繼續研究尋找專屬自己的外延材料,只有這樣才有一線希望通過獲得比340 Lm/w高較多的綠光后,再由紅綠藍三個三基色LED組合后的白光才可能高于藍光芯片型白光LED的光效極限340 Lm/W。

    3、紫外光LED芯片 + 三基色熒光粉發光

    上述兩種白光LED的主要固有缺陷是光度和色度空間分布不均勻。而紫外光是人眼無法感知看到的,因此,紫外光出射芯片后被封裝層的三基色熒光粉吸收,由熒光粉的光致發光轉換成白光,再向空間發射。這是它的最大優點,就像傳統熒光燈一樣,它不存在空間顏色不均勻。但紫外光芯片型白光LED的理論光效不可能高于藍光芯片型白光的理論值,更不可能高于RGB型白光的理論值。

    但是只有通過研發適合紫外光激發的高效三基色熒光粉才有可能得到接近甚至比上述兩種白光LED現階段光效更高的紫外光型白光LED,越靠近藍光的紫外光型LED其可能性越大,中波和短波紫外線型的白光LED就不可能了。做到在LED顯示屏產品上符合高可靠的要求,生產廠家還需要發更多時間,更多精力去往這方面發展,我相信,未來的LED顯示屏行業技術將越來越精湛,發展將無可限量.

    

本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。
主站蜘蛛池模板: 麻豆国产人免费人成免费视频 | 国产精品嫩草影院在线观看免费 | 人喾交性专区免费看 | 看黄网页 | 欧美200z人禽交 | 成人免费一区二区三区在线观看 | 国产日韩欧美网站 | 久久综合中文字幕一区二区 | 欧美羞羞视频 | 成年人在线免费观看视频网站 | 男女后进式猛烈xx00动态图片 | 99久在线精品99re6视频 | 色偷偷888欧美精品久久久 | 日韩精品欧美激情国产一区 | 免费一级黄色录像 | 5566成人免费视频观看 | 正在播放的国产a一片 | 欧美激情一区二区三区免费观看 | 中文字幕在线视频观看 | 成人欧美 | 免费欧美在线视频 | 黄色片免费看看 | 成人永久免费 | 成人看片免费无限观看视频 | 国产资源在线视频 | 欧美第一页草草影院 | 天天操综合视频 | 国产精品女丝袜白丝袜 | 嗯灬啊灬用力再用力ca视频 | 深夜福利在线播放 | 日日热| 国产黄色大片在线观看 | 天天舔夜夜操 | 亚洲成a人v大片在线观看 | 日韩欧美久久一区二区 | 真正全免费视频a毛片 | 韩国欧洲一级毛片免费 | 天天操天天干天天干 | 日韩美女免费线视频网址 | 中文亚洲字幕 | 欧美一级爽快片淫片高清在线观看 |