《電子技術應用》
您所在的位置:首頁 > 人工智能 > 業界動態 > Graphcore IPU-M2000在首個benchmark測試中顯著優于GPU

Graphcore IPU-M2000在首個benchmark測試中顯著優于GPU

Graphcore業界領先的科技現已開始面向全球出貨
2020-12-10
來源:Graphcore
關鍵詞: Graphcore benchmark GPU NVIDIA

2020年12月9日,布里斯托——Graphcore為其最新的AI計算系統——IPU-M2000和縱向擴展的IPU-POD64發布了第一套性能benchmark

在各種流行的模型中,Graphcore技術在訓練和推理方面均顯著優于NVIDIA的A100(基于DGX)。

亮點包括:

訓練

· EfficientNet-B4:吞吐量高18倍

· ResNeXt-101:吞吐量高3.7倍

· BERT-Large:與DGX A100相比,在IPU-POD64上的訓練時間快5.3倍(比雙DGX系統縮短2.6倍)

推理

· LSTM:以更低時延實現吞吐量提升超過600倍

· EfficientNet-B0:吞吐量提升60倍/時延縮短超過16倍

· ResNeXt-101:吞吐量提升40倍/時延縮短10倍

· BERT-Large:以更低的時延實現吞吐量提升3.4倍

Benchmark中包括了BERT-Large(基于Transformer的自然語言處理模型)在IPU-POD64的全部64個處理器上運行的結果。

BERT-Large的訓練時間比最新的NVIDIA DGX-A100快5.3倍(比雙DGX設置快2.6倍以上),這一結果彰顯了Graphcore的IPU-POD橫向擴展解決方案在數據中心的優勢,以及Poplar軟件棧管理復雜工作負載的能力,這些工作負載能夠利用多個處理器并行工作。

Graphcore軟件高級副總裁Matt Fyles在對測試結果發表評論時說:“這一整套全面的benchmark表明Graphcore的IPU-M2000和IPU-POD64在許多流行模型上的性能均優于GPU。”

“諸如EfficientNet之類的新型模型的benchmark特別具有啟發性,因為它們證明了AI的發展方向越來越傾向于IPU的專業架構,而非圖形處理器的傳統設計。”

“客戶需要能夠處理稀疏性以高效運行大規模模型的計算系統,而這正是Graphcore IPU所擅長的。在這種客戶需求的趨勢下,差距只會不斷擴大。”

Graphcore為阿里云HALO定制代碼正式在GitHub開源

Graphcore是阿里云HALO的合作伙伴之一,為阿里云HALO定制開發的代碼odla_PopArt已經在HALO的GitHub上開源

MLCommons

除了發布其AI計算系統的全面benchmark外,Graphcore還宣布,其已經加入新成立的MLPerf下屬機構MLCommons,成為MLCommons的會員。

Graphcore將從2021年開始參加MLCommons的比較benchmark測試。更多信息,請參閱MLCommons的成立公告。

現已出貨

Graphcore最新benchmark的發布與IPU-M2000和IPU-POD64系統向全球客戶的推出時間剛好一致。一些早期發貨的產品已經在數據中心安裝并運行。

銷售工作得到了Graphcore全球合作伙伴網絡以及公司在歐洲、亞洲和美洲的銷售人員和現場工程團隊的支持。

PyTorch和Poplar 1.4

Graphcore用戶現在可以利用Poplar SDK 1.4,包括全面的PyTorch支持。PyTorch已成為從事尖端AI研究的開發人員的首選框架,在更廣泛的AI社區中也收獲了大批的追隨者,并且追隨者的數量還在快速增長。

PapersWithCode的最新數據顯示,在具有關聯代碼的已發表論文中,47%的論文使用了PyTorch框架(2020年9月)。

額外補充的PyTorch支持,再加上Poplar對TensorFlow的現有支持,這意味著絕大多數AI應用程序現在都可以輕松部署在Graphcore系統上。

與Poplar軟件棧的其他元素一樣,Graphcore正在將其用于IPU接口庫的PyTorch開源,從而使社區能夠對PyTorch的開發做出貢獻,并且加速PyTorch的開發。

關于IPU-M2000和IPU-POD

IPU-Machine:M2000(IPU-M2000)是一臺即插即用的機器智能計算刀片,旨在輕松部署并為可大規模擴展的系統提供支持。

纖巧的1U刀片可提供1 PetaFlop的機器智能計算能力,并在機箱內部納入針對AI橫向擴展進行了優化的集成網絡技術。

每個IPU-Machine:M2000(IPU-M2000)均由Graphcore的4個新型7納米Colossus? MK2 GC200 IPU處理器提供動力,并得到Poplar?軟件棧的完全支持。

IPU-POD64是Graphcore的橫向擴展解決方案,包括16臺IPU-M2000,這些機器使用Graphcore的超高帶寬IPU-Fabric?技術進行了預先配置和連接。

IPU-POD64專為需要大規模AI計算功能的客戶而設計,既可以跨多個IPU運行單個工作負載以進行并行計算,也可以通過Graphcore的Virtual-IPU軟件供多個用戶共享使用。


本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。
主站蜘蛛池模板: 日韩在线高清 | 在线亚洲欧美性天天影院 | 三级全黄视频 | 国产在线h视频 | 亚洲午夜免费视频 | 日日摸碰夜夜爽 | 国产精品果贷一区二区借贷宝 | 黄网站免费看 | 日韩2页| 亚洲国产高清一区二区三区 | 成人影院在线播放 | 天天综合天天添夜夜添狠狠添 | 日本特级淫片免费看 | 男女视频免费网站 | 国产情精品嫩草影院88av | 成人区在线观看免费视频 | 手机日韩看片 | 免费观看毛片视频 | 92看片淫黄大片看国产片 | 欧美日韩一区二区视频免费看 | 国产精品亚洲精品日韩已满 | 国产三级网站 | 黄色小视频在线观看免费 | 一区二区在线看 | 国产丝袜视频在线观看 | 日韩高清影视 | 2020在线不卡观看视频 | 国产自线一二三四2021 | 日韩欧美不卡视频 | 亚洲精选在线 | 九九全国免费视频 | 亚洲精品网站在线观看不卡无广告 | 中文字幕视频一区二区 | 欧美亚洲综合另类 | 久久99精品久久久久久青青91 | 天堂最新资源在线 | 亚洲精品永久www嫩草 | 天天碰人人| 岛国一级毛片 | 日韩精品专区 | 久久精品国产91久久麻豆自制 |