文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200900
中文引用格式: 熊中浩,張偉,楊國玉. 基于DBN的網絡安全態勢評估和態勢預測建模研究[J].電子技術應用,2021,47(5):35-39,44.
英文引用格式: Xiong Zhonghao,Zhang Wei,Yang Guoyu. Research on network security situation assessment and situation prediction modeling based on DBN[J]. Application of Electronic Technique,2021,47(5):35-39,44.
0 引言
計算機通信網絡安全(網絡安全)關乎國家安全和個人安全。建立一個安全、穩定、共享的網絡環境是個人和國家的美好愿景。但網絡建立初期到發展至今,惡意破壞網絡安全的事件只增不減,且愈演愈烈,從非法入侵竊取隱私數據到入侵工控網絡篡改運行參數,從經濟損失到人員傷亡,危害國家安全。如2011年12月21日,CSDN網站遭到黑客攻擊,600多萬個明文注冊郵箱被公布,造成了個人隱私數據泄露[1]。2010年,一種針對工業控制網絡系統的蠕蟲病毒震網病毒大規模擴散,伊朗核設施遭到破壞,造成設備運行異常[2]。最近幾年,又出現NotPetya勒索軟件攻擊,危害電網安全。傳統的網絡安全防護辦法(如防火墻、漏洞掃描系統等)所提供的安全防御措施不能對網絡安全狀態進行實施評估,各種防御手段之間存在信息無法交互協同,缺乏整體性、動態性和持續性[3]。態勢感知從上世紀90年代初發展以來,一直備受網絡安全專家的重視和青睞[4]。態勢感知具有全方位、全時段監測網絡安全風險的能力,以網絡安全大數據為基礎,從全局視角監測安全威脅,既可以對當前網絡安全進行評估,又可以預測將來時間的網絡安全指數,為安全威脅處理決策和行動提供依據,真正地做到防患于未然。發展至今,網絡安全態勢評估和態勢預測是態勢感知的重要研究部分,主流的研究方法有:數學理論、知識推理和模式識別,其中基于模式識別的態勢評估和態勢預測方法是近十年研究的熱點[5]。文獻[6]、[7]利用粒子群優化算法和灰色關聯分析法的優點,相應地提出基于粒子群優化指標的SVM(Support Vector Machine)態勢評估模型和基于灰色關聯分析的SVM態勢評估模型;文獻[8]、[9]提出基于徑向基函數和基于灰色理論的BP(Back Propagation)神經網絡的網絡安全態勢評估模型,解決了態勢要素與評估結果中的不確定性和模糊性問題,解釋了態勢要素間非線性映射的理論原因;文獻[10]構建多維度的評價指標體系,結合卷積神經網絡算法并對比驗證其有效性。由于BP神經網絡具有極強的非線性映射和自組織、自學習以及強泛化等特性,被眾多學者青睞并提出多種改進算法的態勢感知和態勢預測模型[11-13]。近十年,深度學習算法研究迅猛進步,應用在網絡安全態勢評估和態勢預測的研究也逐步顯現,文獻[14]提出深度自編碼網絡作為基分類器,改善態勢要素提取機制;文獻[15]、[16]較早地提出基于深度學習算法的網絡安全態勢評估和態勢預測模型。
本文詳細內容請下載:http://m.viuna.cn/resource/share/2000003518
作者信息:
熊中浩1,2,張 偉1,楊國玉1
(1.中國大唐集團科學技術研究院,北京100040;2.大唐水電科學技術研究院有限公司,四川 成都610031)