《電子技術應用》
您所在的位置:首頁 > 人工智能 > 解決方案 > 借助支持邊緣 AI 的 MCU 優化實時控制系統中的系統故障檢測

借助支持邊緣 AI 的 MCU 優化實時控制系統中的系統故障檢測

2024-12-11
來源:德州儀器
關鍵詞: 德州儀器 邊緣AI MCU

  當前關于人工智能 (AI) 和神經網絡的討論主要集中在生成應用(生成圖像、文本和視頻),很容易忽視 AI 將為工業和基礎設施應用中的電子產品帶來變革的實際示例。

  不過,雖然在電機驅動器、太陽能(如圖 1 所示)和電池管理應用的實時控制系統中采用 AI 不會像新的大型語言模型那樣引起大量關注,但使用邊緣 AI 進行故障檢測可以顯著影響系統的效率、安全性和生產力。

30.JPG

  圖 1 太陽能電池板陣列

  本文中將討論集成式微控制器 (MCU) 如何增強高壓實時控制系統中的故障檢測功能。此類 MCU 使用集成神經網絡處理單元 (NPU) 運行卷積神經網絡 (CNN) 模型,幫助在監測系統故障時降低延遲和功耗。通過將邊緣 AI 功能集成到用于管理實時控制的同一 MCU 中,可以幫助您優化系統設計,同時增強整體性能。

  電機軸承和太陽能電弧故障的監測

  要實現電機驅動和太陽能系統的可靠運行,需要進行快速且可預測的系統故障檢測,以幫助減少錯誤警報,同時還需要監測電機軸承異常和實際故障。支持邊緣 AI 的 MCU 可以監測兩種類型的故障:

  • 當電機軸承出現異常情況或老化時,會發生電機軸承故障。檢測這些故障對于防止意外故障、減少停機時間和降低維護成本至關重要。

  • 太陽能電弧故障是指當電流通過意外路徑(如空氣)時發生的電弧放電。太陽能電弧故障通常由太陽能系統中的絕緣擊穿、連接松動或其他故障引起。放電會產生強烈的熱量,從而導致火災或電氣系統損壞。監測和檢測太陽能電弧故障有助于防止危險事件,并確保太陽能系統的安全性和可靠性。

  如果沒有響應式監測,系統可能會因實際故障或錯誤警報而發生意外停機或系統故障,從而影響運營效率和操作員安全。例如,光伏逆變器中的誤報可能會導致系統停機,需要進行檢查,從而影響生產力。帶電電弧漏檢也會增加火災或系統損壞的風險。

  除了 MCU 之外,一些電機軸承故障監測方法還使用多個器件來實現實時控制,通過振動分析進行監測、溫度監控和聲學測量。然后,這種離散化方法使用基于數據的規則檢測來監測潛在故障,這需要手動解析,并且可能會錯過早期故障,或者無法準確檢測故障類型。

  同樣,電弧故障檢測的傳統方法是分析頻域中的電流信號,然后應用基于閾值的規則來檢測電弧故障信號。但這兩種方法都需要大量的系統專業知識,并且自適應性和靈敏度都受到限制,從而限制檢測精度。此外,向系統中添加用于故障監測的分立式器件和用于電機控制的專用實時控制 MCU 會增加系統的復雜性。

  基于邊緣 AI 的集成式故障檢測功能在 TMS320F28P550SJ 等實時 MCU 中本地運行 CNN 模型,有助于提高故障檢測率、避免誤報,同時提供更好的預測性維護。借助邊緣 AI,這些系統可以學習并適應環境,從而優化實時控制、提高整體系統可靠性、安全性和效率,同時減少停機時間(請參閱圖 2)。

31.JPG

  圖 2 實時控制系統中支持邊緣 AI 的故障監測解決方案

  CNN 模型如何增強實時控制系統中的故障監測和檢測

  用于電機軸承和電弧故障檢測的 CNN 模型可以從原始傳感器數據(例如振動信號)中學習復雜模式,然后檢測指示軸承故障的細微變化。

  由于 CNN 模型可以自主從原始或預處理的傳感器數據(例如電機振動信號、太陽能直流電流或電池電壓和電流)中學習,因此 CNN 模型非常適合用于故障檢測和預測性維護的傳感器數據分析。無需手動干預即可直接提取有意義的特征,從而實現穩健、準確的檢測。同時,可以利用表示可變工作條件和不同硬件變化的傳感器數據以及快速傅里葉變換 (FFT) 等不同的預處理算法來提高模型的適應性、抗噪性和可靠性,同時減少總檢測或推理延遲。

  由于 CNN 可以高效處理大量數據,并在不同的運行條件下表現良好,因此適用于工業環境中的實時監測和預測性維護。在這些環境中采用 CNN 模型可以更早、更有效地檢測電機軸承故障,從而提高設備可靠性和運行效率。

  對于電機驅動器,CNN 可以識別故障模式,例如振動或電流信號導致的軸承磨損或轉子不平衡。在太陽能系統 中,CNN 可以檢測直流電流波形中的異常,從而進行電弧故障檢測。在電池管理應用中,CNN 模型可以分析電池充電曲線壽命、進行電池運行狀況監測和電池充電狀態估算。CNN 的適應性可確保在動態條件下進行精確的故 障檢測,而且實時處理可提高效率。




更多精彩內容歡迎點擊==>>電子技術應用-AET<<

3952966954c9c6c308355d1d28d750b.jpg

本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。
主站蜘蛛池模板: 在线观看日本一区 | 日本高清免费h色视频在线观看 | 国产精品久久久久久久9999 | 免费国产精品视频 | 久久笫一福利免费导航 | a级毛片毛片免费观看永久 a级毛片黄色 | 免费香蕉一区二区在线观看 | 日本69xxx18hd | 精品国产一区在线观看 | 狠狠躁夜夜躁人人躁婷婷视频 | 免费视频久久久 | 公又粗又长又大又深好爽日本 | 两个黑人一前一后好爽 | 日韩免费视频在线观看 | 日本特级淫片 | 欧美午夜视频一区二区 | 精品在线播放 | 亚洲不卡一区二区三区 | 国产一级真人毛爱做毛片 | 欧美在线免费 | 日本久久综合视频 | 亚洲精品午夜国产va久久 | 成人中文字幕一区二区三区 | 182tv午夜精品视频在线播放 | 国产高清不卡视频在线播放 | 欧美中文字幕一区 | 国内精品免费视频精选在线观看 | 色婷五月综激情亚洲综合 | 波多野野结衣1区二区 | 久久久久久午夜精品 | 免费视频中文字幕 | 性生交大片免费一级 | 9re视频这里只有精品 | 亚洲欧美一区二区三区另类 | 日韩亚洲国产激情在线观看 | 日韩黄色片在线观看 | 欧美一页 | 国产高清狼人香蕉在线观看 | 精品91麻豆免费免费国产在线 | 五月天免费在线视频 | 午夜高清视频在线观看 |