《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于多模態特征融合的Android惡意程序檢測方法研究
基于多模態特征融合的Android惡意程序檢測方法研究
電子技術應用
葛繼科,何明坤,陳祖琴,凌勁,張一帆
重慶科技大學 計算機科學與工程學院
摘要: 現有Android惡意程序檢測方法主要使用單模態數據來表征程序特征,未能將不同的特征信息進行充分挖掘和融合,導致檢測效果不夠理想。為了提升檢測的準確率和魯棒性,提出一種基于多模態特征融合的Android惡意程序檢測方法。首先對權限信息進行編碼處理并將Dalvik字節碼數據可視化為“矢量”RGB圖像,然后構建前饋神經網絡和卷積神經網絡分別對文本和圖像模態表征的數據進行特征提取,最后對提取的不同模態特征向量分配不同的權重并相加進行融合后對其進行分類。實驗結果表明,該方法對Android惡意程序的識別準確率和F1分數都達到了98.66%,且具有良好的魯棒性。
中圖分類號:TP309.5 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.245881
中文引用格式: 葛繼科,何明坤,陳祖琴,等. 基于多模態特征融合的Android惡意程序檢測方法研究[J]. 電子技術應用,2025,51(1):62-68.
英文引用格式: Ge Jike,He Mingkun,Chen Zuqin,et al. Research on Android malware detection method based on multimodal feature fusion[J]. Application of Electronic Technique,2025,51(1):62-68.
Research on Android malware detection method based on multimodal feature fusion
Ge Jike,He Mingkun,Chen Zuqin,Ling Jin,Zhang Yifan
School of Computer Science and Engineering, Chongqing University of Science and Technology
Abstract: Existing Android malware detection methods mainly use single-modal data to characterize program features, but fail to fully mine and fuse different feature information, resulting in unsatisfactory detection results. In order to improve the accuracy and robustness of detection, a method for detecting Android malware based on multimodal feature fusion is proposed. Firstly, the permission information is encoded and the Dalvik bytecode data is visualized as a “vector” RGB image. Then, a feedforward neural network and a convolutional neural network are constructed to extract features from the data represented by text and image modalities, respectively. Finally, different weights are assigned to the extracted feature vectors of different modalities, which are added and fused before classification. Experimental results show that the recognition accuracy and F1 score of this method for Android malware both reach 98.66%, and it has good robustness.
Key words : Android;malware;multimodality;feedforward neural network;convolutional neural network

引言

隨著移動互聯網技術的興起,移動終端設備的安全性得到了廣泛的關注。Android操作系統因其開源性以及廣泛的市場應用,成為移動終端設備的主要平臺,然而這也使其成為惡意程序攻擊的主要目標。Android惡意程序種類繁多,包括木馬軟件、勒索軟件、廣告軟件和間諜軟件等,這些惡意程序通過各種途徑入侵設備,嚴重威脅用戶的隱私和數據安全[1]。因此,有效地對Android惡意程序進行檢測對于保護用戶隱私數據及安全具有重要意義。

現有Android惡意程序檢測方法在對惡意程序的特征表示和利用上不夠全面,檢測效果不夠理想且魯棒性較差。為了能夠更加全面地表示惡意程序的特征以提高檢測效果,本文提出一種基于多模態特征融合的Android惡意程序檢測方法。該方法將多模態數據特征融合技術應用于Android惡意程序分析領域,使用文本和圖像兩種模態數據分別表征程序的權限特征和Dalvik字節碼特征,通過構建前饋神經網絡卷積神經網絡對其進行特征提取并對提取的特征向量進行加權融合后分類。

本文的主要工作及貢獻包括:

(1)提出一種基于多模態特征融合的Android惡意程序檢測方法,使用文本和圖像兩種不同的模態數據表征應用程序的特征;

(2)構建了動態權限表實現對權限信息的編碼處理,同時實現了將Dalvik字節碼可視化為“矢量”RGB圖像;

(3)構建了前饋神經網絡和卷積神經網絡對不同模態的特征數據進行特征提取,對提取到的特征加權后相加進行融合并分類。


本文詳細內容請下載:

http://m.viuna.cn/resource/share/2000006284


作者信息:

葛繼科,何明坤,陳祖琴,凌勁,張一帆

(重慶科技大學 計算機科學與工程學院,重慶 401331)


Magazine.Subscription.jpg


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 男女视频在线观看网站 | 天天噜噜揉揉狠狠夜夜 | 人人玩人人添人人澡免费 | 一道本在线 | 日本a在线观看 | 色偷偷亚洲第一成人综合网址 | 1024cc香蕉在线观看免费 | 日韩在线观看中文字幕 | 黄色v片 | 99热色 | www中文字幕在线观看 | 青青青国产精品国产精品美女 | 亚洲午夜免费视频 | 免费成年人在线视频 | 国产盗摄一区二区欧美精品 | 手机福利视频一区二区 | 91最新视频在线观看 | 亚洲最黄网站 | 一个人的www免费视频 | 国产精品入口麻豆免费观看 | 亚洲一区 在线播放 | 日韩精品视频在线观看免费 | 欧美性视频网站 | 亚洲欧美日韩中文不卡 | 色黄啪啪网18以下勿进动画 | 日韩高清在线日韩大片观看网址 | 欧美日韩三级在线观看 | 伊人久久大香线蕉免费视频 | 午夜视频在线观看网站 | 日日夜夜天天干干 | 久久艹精品 | 亚洲国产成人在线视频 | 国产91精品一区二区视色 | 国产成人午夜片在线观看 | 国产在线一区在线视频 | 国产成人在线视频免费观看 | 1区1区3区4区产品亚洲 | 一本大道在线 | 欧美日韩一区二区三区韩大 | 成a人片在线观看 | 新香蕉视频在线 |