《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計 > 設(shè)計應(yīng)用 > 基于PCA和LDA融合算法的性別鑒別
基于PCA和LDA融合算法的性別鑒別
趙 州 唐慧強
摘要: 結(jié)合主元分析(PCA)與線性鑒別分析(LDA)的特點,利用PCA-LDA算法進行性別鑒別。通過PCA算法求得訓(xùn)練樣本的特征子空間,并在此基礎(chǔ)上計算出LDA算法的特征子空間。將PCA算法與LDA算法的特征子空間進行融合,獲得PCA-LDA算法的融合特征空間。訓(xùn)練樣本與測試樣本分別朝融合特征空間投影,從而得到識別特征。利用最近鄰準則即可完成性別鑒別。實驗中利用三種預(yù)處理方法(PCA+LDA、HG+PCA+LDA、RHG+PCA+LDA),得出各自的實驗結(jié)果,并進行比較。實驗結(jié)果表明,利用RHG+PCA+LDA方法預(yù)處理后,使用PCA-LDA算法進行性別鑒別可以得到理想的效果。
Abstract:
Key words :

隨著社會發(fā)展,快速有效的自動身份驗證應(yīng)用廣泛。生物特征是人類的內(nèi)在屬性,具有很強的自身穩(wěn)定性和個體差異性,所以它是身份驗證最理想的依據(jù)。其中,人臉相比其他的人體生物特征具有直接、方便、友好等特點,所以利用人臉特征進行身份驗證是最自然直接的手段,并易于為用戶所接受。性別鑒別作為其中特殊的一部分,可以加強人機交互系統(tǒng)的靈活性,而且可以對特殊環(huán)境下與性別相關(guān)的地方出入進行限制,收集有價值的統(tǒng)計信息(如每天出入的男性、女性數(shù)量,對酒吧、商場、零售業(yè)提供有價值的服務(wù))等。

1 性別分類算法
   
性別分類是一個典型的二類問題,一般方法是通過輸入一副人臉圖像X,通過預(yù)處理,特征提取,分類器等過程后來決定X的類別。這里的性別分類算法如圖1所示,它是由預(yù)處理、特征提取、分類器3個部分組成。


    其中預(yù)處理主要是幾何變換和區(qū)域直方圖處理。通過這些工作保障了人臉幾何(方向,大小)的不變性?;鞠吮尘暗挠绊懞筒糠止庹沼绊懀岣吡俗R別的精度。然后再預(yù)處理的基礎(chǔ)上進行主元分析提取特征,獲得主元分析PAC(Principal components Analysis)主元子空間和線性鑒別分析LDA(Linear Discriminant Analysis)特征子空間,最后利用分離器(人臉樣本訓(xùn)練獲得)進行分類。
1.1 預(yù)處理
   
該性別分類算法主要采用,幾何處理+整體直方圖處理(HG),幾何處理+區(qū)域直方圖處理(RHG)2種方法進行預(yù)處理,并進行比較。
1.1.1 幾何處理
   
1)圖像的縮放
    MATLAB圖像處理工具箱中的函數(shù)imresize可對圖像進行縮放操作,常用的格式為:
   
    B是縮放后圖片;A是原始圖片;m表示縮放倍數(shù)(m>1時圖片放大;m<1時圖片縮小);method是縮放的插值方法(默認為最近鄰插值法);[mrows,ncols]指輸出圖片大小為mrowsxncols。
    2)圖像的旋轉(zhuǎn)處理
    有些待分類的圖像,人臉是歪斜的,這時要對圖像進行旋轉(zhuǎn)處理如圖2所示。但旋轉(zhuǎn)時各像素的坐標會發(fā)生變化,使得旋轉(zhuǎn)之后不能正好落在整數(shù)坐標處,需要進行插值,工具箱中函數(shù)imrotate方法可以對圖像進行插值旋轉(zhuǎn)(默認方法是最近鄰插值法)。常用的語法格式為:
   
    其方法中對應(yīng)的參數(shù)意義為:angle為圖像A按照逆時針旋轉(zhuǎn)的角度,method是選擇的插值方法。


    3)圖像的剪切
    當只需要圖像中的一部分時,如實驗中只需要人臉圖片,就要對圖像進行剪切處理,在MATLAB圖像處理工具箱中提供函數(shù)imcrop用于剪切圖像中的一個矩形子圖,用戶可以根據(jù)這個矩形頂點的坐標,也可以用鼠標指針選取這個矩形。該函數(shù)常用的格式如下:
   
    其中前3種格式為交互式地對灰度圖像、索引色圖像和真彩色圖像進行剪切。后3種方式是按指定的矩形框rect剪切圖像,rect是一個四元向量[xmin,ymin width heigth],分別表示矩形的左上角坐標、寬度和高度。
1.1. 2 整體直方圖處理(HG)
   
直方圖方法是建立在概率論的基礎(chǔ)上,是通過改變直方圖的形狀來達到增強圖像對比度的效果。常用的方法有直方圖均衡化和直方圖規(guī)定化。直方圖均衡化又稱直方圖平坦化,是將一已知灰度概率密度分布的圖像,經(jīng)過某種變換成一幅具有均勻灰度概率密度分布的新圖像,其結(jié)果是擴展了像元取值的動態(tài)范圍,從而達到增強整體對比度的目的。采用MATLAB工具箱中histeq方法對圖像進行直方圖處理。
    常用B=histeq(A)。
1.1.3 區(qū)域直方圖處理(RHG)
   
直方圖處理是探討了亮度標準化方法的一般計算模型,為了解決偏光問題,又提出了亮度標準化的分塊策略,采用將圖片等分4份,對偏光嚴重的人臉圖片進行區(qū)域直方圖處理后再合成原始大小圖片。針對圖像整體直方圖和分塊區(qū)域化后直方圖取得的效果進行比較,如圖3所示。


1.2 PCA算法的基本原理
   
主成分分析法PCA(Principal Component Analysis)其目的是在數(shù)據(jù)空間中找到一組向量以盡可能地解釋數(shù)據(jù)的方差,從而用降維后的低維向量保存原數(shù)據(jù)中的主要信息,使數(shù)據(jù)更易于處理。主要原理就是基于對原始數(shù)據(jù)進行統(tǒng)計分析,利用線性變換,對高維數(shù)據(jù)進行分析與壓縮。由于人臉結(jié)構(gòu)的相似性,當把人臉圖像樣本進行規(guī)一化并抽成一個高維向量后,這些圖像在高維空間中不是隨機或散亂地分布的,
而是存在某種規(guī)律。通過主元變換進行人臉識別的方法被稱為“特征臉”方法。
    主成分分析是將分散在一組變量上的信息集中到某幾個綜合指標(主成分)上的探索性統(tǒng)計分析方法,以便利用主成分描述數(shù)據(jù)集的內(nèi)部結(jié)構(gòu),實際上起著數(shù)據(jù)降維的作用。
    假設(shè)有一幅大小為N1xN2的灰度圖像P(x,y),其中x∈[1,N1],y∈[1,N2],且像素值P(x,y)滿足P(x,y)∈[0,1],x為行索引值,y為列索引值。為了應(yīng)用PCA技術(shù),首先要將該人臉從二維矩陣轉(zhuǎn)化為一維向量,這可以通過如下操作達到要求。
    將kxl的矩陣C的第1行轉(zhuǎn)置,然后將C的第2行轉(zhuǎn)置拼接于其后,如此類推,直到最后將第k行轉(zhuǎn)置并拼接起來。例如,矩陣在經(jīng)過上述操作以后,就變?yōu)?a11 a12 a13 a21 a22 a23)T。一幅大小為N1xN2的灰度圖像可以被轉(zhuǎn)換為N1xN2維的向量,因此可以將一幅人臉圖像視為高維空間中的一個點,并用PCA技術(shù)使用少數(shù)特征來近似描述人臉圖像在高維空間中的分布。
    考慮n(N1xN2)維空間中的m個向量x1,x2,…,xm為了降低維數(shù),需要用一個m維的向量x’來近似模擬,其中m<。PCA技術(shù)使用變換:
   
    通常假設(shè)隨機向量(x-μ)為零均值,即μ取值為隨機向量x的期望
   
    WT=(w1,w2,…,wm)為一個mxn的變換矩陣。(x-μ)是一個(nxl)n維的向量。y是m維的向量。這是一個線性的變換,式(1)是個內(nèi)積,引述內(nèi)積的定義:
   
    圖4為式(3)的物理意義。


    如果使式(3)具有投影的意義,即z向量是y向量到x向量的方向上的投影,如圖4所示,那么必須使得|x|=1,即z=|y|cosθ。
    現(xiàn)在考慮PCA變換矩陣W第一個向量


    如果在條件|w1|=1使ξ1的方差達到最大,希望最大程度的保持樣本集x原有的差異(Variance)。也就是要的值最大。這成為了一個優(yōu)化問題。目標函數(shù)是,條件是,使用拉格朗日乘數(shù)法

    因此λ1是協(xié)方差矩陣M的一個特征值,w1是λ1對應(yīng)的特征向量。要使其方差最大,就必須使的值最大,因為,所以,λ1應(yīng)是M矩陣的最大特征值。
    現(xiàn)在考慮PCA變換矩陣WT第2到第m個向量,這里的向量是互不相關(guān)的,代表著不同的投影方向,這樣可以提取出不同的主特征。要滿足這個條件,考慮協(xié)方差矩陣M,它是對稱的陣,有多個特征值λi,i∈(1,n),因此,轉(zhuǎn)換矩陣中w1,w2,…,wm應(yīng)該如下取值:首先求出M的特征向量和對應(yīng)的特征值,然后依據(jù)特征值排序為λ1≥λ2≥…≥λn,它們對應(yīng)的特征向量分別為w1,w2,…,wn,則取最前面的m個向量w1,w2,…,wm組成PCA變換矩陣。
    出于數(shù)值計算方面的考慮,通常不使用M矩陣求特征值,和特征值對應(yīng)的特征向量,而使用奇異值分解(SVD,Singular Value  Decompo-sition)來計算前m個主方向。
1.3 SVD奇異值分解定理
    SVD定理:設(shè)A是秩為r的nxr維的矩陣,則存在兩個正交矩陣: 

    由于M=AAT,其中,故構(gòu)造矩陣,M為訓(xùn)練樣本集中的樣本個數(shù)。容易求出其特征值λi及其相應(yīng)的特征向量vi(i=O,1,…,M-1)。由推論式可知,M的特征向量ui
   
1.4 LDA方法算法說明
    LDA(Linear Discriminant Analysis)方法也稱為線性判別分析方法。它選擇與類內(nèi)散布的正交的矢量作為特征臉空間,從而能夠壓制圖像之間的與識別信息無關(guān)的差異,對光照及人臉表情變化都不太敏感。這種方法的最終目的就是找到一些特征使得類間離散度和類內(nèi)離散度的比值最大。
   
    式中,Pi是先驗概率,mi是Ci類的均值,m是所有樣本的均值。
    如果Sw是非奇異矩陣,在投影以后,各類樣本之間盡可能的分開一些,即類間離散度越大越好,同時各類樣本的內(nèi)部盡量密集起來,即類內(nèi)離散度越小越好。因此可以定義Fisher準則函數(shù)如下:

    如果Sw非奇異,就是求Sw-1Sb的特征值及其特征向量問題。其中該矩陣最多只有C-1個非零特征值,C是類別數(shù)目。
1.5 PCA-LDA算法的融合
   
將PCA算法與LDA算法構(gòu)造的特征子空間進行融合,獲得其融合空間,然后,將訓(xùn)練樣本與測試樣本分別朝該融合特征空間投影,獲得識別特征,最后,利用最近鄰準則完成性別鑒定。
    PCA-LDA算法融合是根據(jù)PCA算法和LDA算法的特征子空間W1,W2進行融合,即:W1=W1*W2,得到融合特征空間:Ws。其中,其中行數(shù)表示訓(xùn)練樣本維數(shù),列表示LDA算法降維后的特征向量個數(shù)。在訓(xùn)練過程中,將訓(xùn)練樣本矩陣X投影到融合特征空間Ws中,使得每一個向量代表一個訓(xùn)練樣本的特征,在測試過程中,首先將測試樣本規(guī)范化,即將測試樣本減去平均值,在轉(zhuǎn)化成列向量向PCA空間和融合空間投影獲得識別特征,最后將測試樣本的識別特征和訓(xùn)練樣本的識別特征進行一一比較,依據(jù)鄰近準則得到最小距離d所屬樣本的屬性。

2 試驗步驟與過程
2.1 試驗步驟
2.1.1 樣本的訓(xùn)練

    1)照片的預(yù)處理,照片歸一化;
    2)求得訓(xùn)練樣本的平均臉、零均值;
    3)提取訓(xùn)練樣本的PCA矩陣;
    4)提取訓(xùn)練樣本的LDA矩陣;
    5)PCA矩陣和LDA矩陣融合獲得分類器。
2.1.2 待測試照片的識別
   
1)將測試照片預(yù)處理;
    2)測試照片向融合空間投影,得到低微空間上的點;
    3)計算該點與訓(xùn)練樣本的“特征臉”距離比較,輸出距離最近的那張“特征臉”的信息,從而達到性別識別目的。
2.2 實驗過程
   
本實驗中所用到的圖片來源于ORL人臉圖像庫和yale人臉圖像庫,ORL人臉圖像庫是英國劍橋大學(xué)從1992到1994年間在實驗室采集到的人臉圖像數(shù)據(jù),由40人,每人10幅,共400幅照片,每幅分辨率為92xll2,主要包括拍攝時間、光照條件、人臉表情和面部遮掩物的不同。而yale人臉圖像庫是耶魯大學(xué)提供的,共有15人,每人11張照片,分辨率為100x100,主要包括光照條件的變化表情的變化等。
    該試驗采用yale圖像庫中的人臉照片。利用平均臉公式,實驗中所得到的平均臉如圖5和圖6所示。
   


    PCA矩陣提取試驗分析,圖7為PCA算法實現(xiàn)流程圖。


    LDA矩陣提取試驗分析,圖8為LDA算法實現(xiàn)流程圖。


    然后再將LDA-PCA矩陣融合;利用歐式距離求出待識別人臉的特征臉再根據(jù)臨近原則實現(xiàn)性別識別;采用直方圖處理的識別實驗(PCA+L-DA);采用整體直方圖處理的識別實驗(HG+PCA+LDA);采用直方圖區(qū)域預(yù)處理的識別實驗(RHG+PCA+LDA)。

3 實驗結(jié)果分析與結(jié)論
   
實驗結(jié)果如圖9所示,表明:用PCA-LDA融合空間算法的識別正確率都在80%以上,是比較高的。采用直方圖處理的識別實驗(PCA+LDA)在3種方法的識別正確率比較中相對較低,且波動性較大,特別的,在樣本數(shù)量為20,40時,出現(xiàn)了0.83,0.84的正確率,為整個曲線中的低谷,整體效果相對來說一般。采用整體直方圖處理的識別實驗(HG+PCA+LDA)正確率曲線相對來說較為平滑,隨著樣本數(shù)量的增加,整個曲線呈現(xiàn)遞增趨勢,但識別正確率不是特別理想。采用區(qū)域直方圖預(yù)處理的識別實驗(RHG+PCA+LDA)的正確率整體來說最高,整個曲線完全凌駕于前2種算法之上,雖然在小樣本數(shù)量空間內(nèi)出現(xiàn)波動,但波動為曲線的相對波峰,即識別正確率是提高的。3種方法在整個樣本空間內(nèi)均為隨著樣本數(shù)量的增加,識別正確率平穩(wěn)上升,漸趨于完全正確。但采用區(qū)域直方圖預(yù)處理的識別實驗(RHG+PCA+LDA)后整體識別正確率最高,為三個算法中在整個樣本空間內(nèi)的相對最優(yōu)算法。


   經(jīng)過以上實驗結(jié)果分析,在進行人臉性別識別時,建議用PCA-LDA融合空間算法,采用區(qū)域直方圖預(yù)處理(RHG+PCA+LDA),這樣會達到理想的效果,并且樣本數(shù)量應(yīng)該盡量的多。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 一级做一级爱a做片性视频视频 | 亚洲视频免费观看 | 韩国三级伦理片 | 婷婷 综合网站 | 日韩字幕一中文在线综合 | 高清国产精品入口麻豆 | 欧洲视频一区 | 成人网18视频网站 | 黄色影片免费在线观看 | 黄色一级在线观看 | 一级一片免费视频播放 | yellow中文字幕久久网 | 日韩精品网站 | 18男同志可播放free69 | 中国一级做a爰片久久毛片 中国一级做a爱片免费 | 91福利社在线观看 | 国产三级精品三级在专区 | 亚洲视频 在线观看 | 国产免费无遮挡精品视频 | 一级毛片不卡片免费观看 | 九九亚洲精品自拍 | 福利片在线看 | 国产 日韩 欧美在线 | 久久精品国产91久久麻豆自制 | α片免费 | 日韩黄色大全 | 1级黄色录像 | 午夜剧场操一操 | 一女n男np高h文 | 国产在线成人精品 | 国产东北男同志videos网站 | 羞羞视频免费网站含羞草 | 男人私人影院免费看视频 | 被多人强伦的小柔小说片段 | 中文一区在线观看 | 人人做人人干 | 欧美在线精品一区二区在线观看 | 多多多色麻豆 | 亚洲欧美另类国产综合 | 秋霞宅宅236理论片 秋霞在线高清观看伦理片 秋霞影视伦理手机在线观看 | 欧美一区二区高清 |