基于網絡表示學習的區塊鏈異常交易檢測 | |
所屬分類:技術論文 | |
上傳者:zhoubin333 | |
文檔大小:470 K | |
標簽: 區塊鏈 異常檢測 網絡表示學習 | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:由于具有巨大的流通市值、龐大的用戶量和賬戶匿名性的特點,區塊鏈交易頻繁受到盜竊、龐氏騙局、欺詐等異常行為的威脅。針對區塊鏈異常交易,提出一種網絡表示學習模型DeepWalk-Ba用于特征提取,以比特幣為例,對區塊鏈交易的網絡結構和屬性進行學習,從交易的鄰域結構中挖掘隱含信息作為節點特征,再使用5種有監督和1種無監督的機器學習算法進行異常檢測。實驗表明,有監督模型隨機森林表現最好,達到了99.3%的精確率和86.4%的召回率,比使用傳統的特征提取方法的異常檢測模型具有更好的檢測效果。 | |
現在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統工程研究所版權所有 京ICP備10017138號-2