澳洲業者BrainChip宣布采用其棘波神經處理器(spiking neural processor)技術,開發了自主性視覺特征提取(Autonomous Visual Feature Extraction,AVFE)系統。
BrainChip的神經網路處理器被稱為SNAP,采用訊號棘波來傳輸資料,以及一種叫做棘波時機相關可塑性(Spike Time Dependent Plasticity,STDP)的學習方法。AVFE是一項突破,證明能從視覺資料流進行無人監督的學習,可應用于諸如自動駕駛車輛與無人機的防碰撞功能。
根據BrainChip所提供的資料,SNAP上的AVFE每秒能處理100萬個視覺事件,而且能在幾秒鐘學習并辨別資料流中的圖形;SNAP/AVFE是以該公司向瑞士開發商Inilabs采購的Davis 動態視覺感測器(Dynamic Vision Sensor),做為串流數位視訊資料的來源。
Davis 動態視覺感測器是一種人工視網膜,擁有與SNAP相同的位置事件表現(Address Event Representation,AER)介面;并非將視訊訊框輸出,每個畫素只要在對比(contrast)變化時就會輸出一個或更多棘波。
AVFE 系統架構
執行于SNAP上并連結至一個恰當視訊來源的AVFE潛在應用,包括車輛以及無人機內的防碰撞系統、異常狀況檢測、保全與醫療成像等等。
該系統最初對于輸入資料流內容并無所知,會藉由重復性與強度自主學習,并開始找到影像串流內的圖形;影像串流可以是由視覺影像感測器(如Davis人工視網膜)所產生,或是經過恰當設計的雷達或超音波來源設備。
AVFE已經在美國加州帕沙迪那(Pasadena)的高速公路上進行過測試,持續運作了78.5秒,SNAP棘波神經網路學習辨別車輛并開始即時計算其數量。
以Inilabs的Davis視網膜晶片擷取的視覺影像,顯示在高速公路上移動的車流
BrainChip執行長、SNAP神經處理器的發明人Peter van der Made表示:“我們對于此大幅度進展感到非常興奮,展現了BrainChips的神經處理器SNAP能在無人類監督的情況下,從視覺饋入擷取資訊并學習。”