文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.2016.12.035
中文引用格式: 楊斌,陶雪慧,沈黎韜. 基于CLL諧振的大功率多路輸出LED驅動器[J].電子技術應用,2016,42(12):134-138.
英文引用格式: Yang Bin,Tao Xuehui,Shen Litao. High power multi-channel LED driver with CLL resonant[J].Application of Electronic Technique,2016,42(12):134-138.
0 引言
LED具有發光效能高、光學性能好、壽命長等優點,廣泛應用于照明、背光源等領域[1]。實際應用中,常常需要將多個LED串并聯,為了保持各并聯LED串發光強度與熱效應一致,必須解決各并聯LED串之間的電流均衡問題。另一方面,傳統大功率LED驅動器原邊大多采用LLC諧振[2-4],變換器工作在連續模式,只能實現開關管零電壓(ZVS)導通,副邊整流二極管無法實現零電流(ZCS)關斷,造成二極管的反向恢復問題。文獻[5]采用CLL諧振,能在全負載范圍內實現開關管ZVS開通和ZCS關斷,且電路始終工作在諧振點,但電路采用兩級DC/DC結構,電路復雜。
傳統大功率LED驅動器一般采用PFC+DC/DC+恒流模塊的三級式結構,電路復雜,效率低。本文提出了一種新型大功率LED驅動器,電路采取Boost型PFC+CLL諧振兩級式結構,效率高,電路簡單。
1 電路原理
本文提出的基于CLL諧振的多路輸出LED驅動器如圖1所示。前級PFC主電路采用Boost拓撲,可以抑制諧波污染,提高功率因數,并且輸出電壓恒定,為后級DC/DC電路提供穩定的電壓。CLL諧振電路能在全負載范圍內實現開關管的ZVS開通和整流二極管的ZCS關斷,提高了電路效率。CLL諧振電路副邊僅使用電容作為均流元件,避免了磁性元件的弊端,能直接驅動多路LED負載,從而節省了傳統LED驅動器的第三級恒流模塊。而且,電路能方便地推廣到多路輸出的應用場合,易于實現模塊化。
前級PFC主電路采用Boost拓撲,電路工作在電流臨界模式。圖2為半個工頻周期內電感電流波形圖。其工作原理如下:每一周期開始時,開關管S3導通,電感電流iLb線性增加,電感電流變化率為然后將電感電流的檢測信號和參考信號相比,當檢測電流值等于參考值時,開關管S3關斷,電感電流減小,當電感電流降為零時,開關管S3再次導通,進入下一個開關周期,如此周而復始[6]。
由于可以近似地將一個開關周期內的電網電壓認為是定值,所以電感電流在半個工頻周期內達到峰值時的值為:
由式(1)可以看出,在每個開關周期中電感電流峰值iLb_pk為 sinωt的函數,如果保持導通時間Ton不變,則在半個工頻周期內電感電流的峰值包絡線是正弦變化的。
后級DC/DC采用CLL諧振變換器,分為連續模式和斷續模式,本文中CLL諧振工作在斷續模式。圖3為斷續模式下的波形圖,各具體模態分析如下。
(1)模態1[t0-t1]:t0時刻,S1、S2關斷,由于電路工作在斷續模式,Cr的電流icr等于L1的電流iL1且icr<0,流過變壓器原邊電流值iL2為0。寄生電容Coss1放電,同時寄生電容Coss2充電。
(2)模態2[t1-t2]:t1時刻,|icr|開始大于|iL1|,iL2>0,此時副邊二極管D1和D2n-1開始導通,直至t4時刻結束。
(3)模態3[t2-t3]:t2時刻,Coss1和Coss2充放電結束,icr流過S1的體二極管Do1,為S1的零電壓開通創造條件。
(4)模態4[t3-t4]:t3時刻,S1零電壓開通,直到t4時刻,icr=iL1,模態4結束。
(5)模態5[t4-t5]:t4時刻,iL2=0,D1、D2n-1零電流關斷,此時不再有電流流過變壓器副邊,電路工作在斷續模式。t5時刻,S1關斷,模態5結束。
此后半個周期中電路工作狀態與前半個周期類似。
根據電容的充電平衡原理,在一個開關周期內的電容的電荷總和為零,即正電荷量等于負電荷量,由此可以推出式(2)。流過Cb2的正電荷量和負電荷量為Q5和Q6,流過四路負載LED1、LED2、LED3、LED4的平均電流分別是相應電荷量Q1、Q2、Q3、Q4的開關周期平均值,如式(3)所示。
即四路輸出負載電流相等,而且i1=i2。由此可見,僅通過均流電容就可以實現四路LED負載的自動均流。
2 加平衡電容時CLL諧振變換器增益特性
2.1 穩態分析
Cb1、Cb2和Cb3上的電壓可以分為直流分量和交流分量兩部分之和。直流分量用直流電壓源Vcb1、Vcb2和Vcb3表示,交流分量用沒有直流偏置的電容Cb1、Cb2和Cb3表示。四路負載等效為電壓源Vo1、Vo2、Vo3和Vo4,變壓器副邊繞組電壓直流分量用Vs表示,如圖4所示。在模態Ⅰ和模態Ⅱ中,根據基爾霍夫電壓定律,可得式(5)。
2.2 增益分析
根據圖5,多路輸出CLL諧振變換器可以等效為單路輸出CLL諧振變換器。通過基波簡化,可以得到最終交流等效電路如圖6所示。
采用基波近似法,可以推導出加平衡電容的CLL諧振變換器直流電壓增益公式為:
圖7為CLL諧振變換器恒流曲線,圖中每一條曲線對應一個恒定輸出電流時,輸出電壓隨頻率的變化。所有曲線在f1時,即諧振頻率點時,輸出電壓相同。
3 關鍵電路參數的設計原則
前級PFC電路工作在臨界模式,電感Lb可由式(13)獲得:
后級CLL諧振電路主要參數為:輸入電壓為400 V的直流電壓,每路輸出350 mA,輸出電壓為80~120 V。本文以此為主要參數設計了CLL諧振電路的n、k、B。
CLL變換器在諧振點f1處的電壓增益為:
可見,為得到最佳設計點(諧振點),則變壓器匝比Nor=Vin(k+1)(B+1)/2Vo(kB+k+1)。
圖8為輸出電流為0.35 A時不同匝比n的恒流曲線,如果變壓器匝比設計為n=Nor,工作頻率范圍較廣,不利于磁性元件的設計。為減小工作頻率范圍,實際變壓器繞組匝比n應略大于額定變壓器匝比Nor。由圖7可知,n越大,工作頻率范圍越小,但是過大的n會導致變換器工作頻率較低,增大磁性元件的體積,降低效率,所以n不宜過大。
由圖9可知,k越大,工作頻率范圍越小。但是k越大,變換器工作頻率越低,導致效率降低,因此折中取k=10。
由圖10可知,B越大,工作頻率范圍越小,且工作頻率越靠近諧振頻率,有利于提高效率。但是B越大,Cb1、Cb2也越大,在電路啟動時,各路輸出電流會出現不均衡的現象,因此折中取B=5。
4 實驗結果
根據上述分析,制作了實驗樣機。主要設計參數如下:PFC電感Lb=120 μH,諧振電容Cr=22 nF,諧振電感L1=580 μH,諧振電感L2=58 μH,CLL諧振變壓器匝比n=3:1,均流電容Cb1=Cb3=470 nF,Cb2=10 μF。
圖11是四路LED輸出電壓和輸出電流波形,圖中Vo1=118 V,Vo2=99.4 V,Vo3=88.3 V,Vo4=77.8 V,實驗表明各路LED負載電流幾乎相等。
圖12(a)為CLL諧振電路原邊開關管S2的柵級和漏源級電壓波形,圖12(b)為整流二極管D1的電壓和電流波形,從圖12(a)、(b)可以看出電路實現了開關管ZVS開通和整流二極管ZCS關斷。圖12(c)為輸入電壓Uin和輸入電流iin的波形圖,從圖中可見輸入電流波形的正弦特性較好,與輸入電壓基本同相位,功率因數較好。圖12(d)為開關管S3的柵極電壓波形和電感Lb的電流波形。由圖可知,開關管S3開通,電感電流上升至峰值時,開關管S3關斷,電感電流下降。因此,前級Boost型PFC電路工作在臨界模式。
表1列出了220 V交流輸入時,不同輸出電壓與輸出電流值,由表1可知,不同輸出電壓下,各路輸出電流值幾乎相等,與理論分析一致。
圖13為220 V交流輸入時,電路的功率因數PF和效率η的變換曲線。整機平均效率超過90%,最高效率達到93%,PF值高于0.96。
5 結論
本文提出了基于CLL諧振的大功率多路輸出LED驅動器,該電路采用BCM Boost+CLL半橋諧振變換器的兩級拓撲結構。該電路能夠實現開關管的ZVS開通和整流二極管的ZCS關斷,提高了整機效率。該電路易于擴展,且能在寬輸出電壓范圍內實現各路輸出均流。根據本文給出的設計方法,研制了一臺驅動電源,實驗表明,各LED串之間能實現精確均流,能實現較高的功率因數,驗證了理論分析的正確性。
參考文獻
[1] 俞憶潔,張方華,倪建軍.對稱跨接電容型LED均流電路[J].電工技術學報,2014,29(8):196-203.
[2] 胡晨,吳新科,彭方正,等.基于多電容充放電平衡的多路輸出LED驅動器[J].浙江大學學報:工學版,2014(12):2202-2209.
[3] WU X,ZHANG J,QIAN Z.A simple two-channel LED driver with automatic precise current sharing[J].Industrial Electronics,IEEE Transactions on,2011,58(10):4783-4788.
[4] ZHANG Y,HU C,WU X.Analysis and design of LLCC resonant four-channel DC-DC LED driver with current sharing transformer[C].Applied Power Electronics Conference and Exposition(APEC),2013 Twenty-Eighth Annual IEEE.IEEE,2013:3295-3300.
[5] CHEN X,HUANG D,LI Q,et al.Multichannel LED driver with CLL resonant converter[J].Emerging and Selected Topics in Power Electronics,IEEE Journal of,2015,3(3):589-598.
[6] 王志鵬,陶生桂,湯春華.基于L6561的電流準連續模式APFC電源設計[J].通信電源技術,2004,21(4):9-12.
[7] 吳建雪,許建平,陳章勇.CLL諧振變換器諧振電路參數優化設計[J].電力自動化設備,2015,35(1):79-84.