《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 一種改進的變步長常模判決反饋盲均衡算法
一種改進的變步長常模判決反饋盲均衡算法
2017年微型機與應用第9期
張家生,崔鵬鵬,沈忱,韓迎鴿
安徽理工大學 電氣與信息工程學院,安徽 淮南 232001
摘要: 針對基于CMA的DFE盲均衡算法收斂速度慢、收斂后穩態剩余誤差大的缺點,提出了一種改進的基于CMA的DFE盲均衡算法。該算法通過引入均方誤差作為調整步長的參量,構造出指數型變步長函數,把基于CMA的DFE盲均衡算法中前饋濾波器和反饋濾波器更新方程中的固定步長值變為可變值,并對其收斂性做了分析。計算機仿真表明,改進算法具有較快的收斂速度和更小的剩余誤差。
Abstract:
Key words :

  張家生,崔鵬鵬,沈忱,韓迎鴿

  (安徽理工大學 電氣與信息工程學院,安徽 淮南 232001)

  摘要:針對基于CMA的DFE盲均衡算法收斂速度慢、收斂后穩態剩余誤差大的缺點,提出了一種改進的基于CMA的DFE盲均衡算法。該算法通過引入均方誤差作為調整步長的參量,構造出指數型變步長函數,把基于CMA的DFE盲均衡算法中前饋濾波器和反饋濾波器更新方程中的固定步長值變為可變值,并對其收斂性做了分析。計算機仿真表明,改進算法具有較快的收斂速度和更小的剩余誤差。

  關鍵詞:CMA;碼間干擾(ISI)判決反饋均衡器(DFE);變步長

  中圖分類號:TN911文獻標識碼:ADOI: 10.19358/j.issn.1674-7720.2017.09.021

  引用格式:張家生,崔鵬鵬,沈忱,等.一種改進的變步長常模判決反饋盲均衡算法[J].微型機與應用,2017,36(9):71-73,77.

0引言

  高速數據通信系統中,碼間干擾是影響通信質量的主要決定因素,為了消除碼間干擾(Inter Symbol Interference, ISI),必須進行信道均衡。盲均衡由于不需要發送訓練序列引起了各國學術界以及通信業界的高度重視。在各種盲均衡算法中,基于常數模算法(Constant Modulus Algorithm,CMA)的判決反饋盲均衡(Decision Feedback Equalization,DFE)由于反饋濾波器部件具有非線性特性,能在有效消除ISI的同時不引入增益噪聲[12],因此得到了廣泛應用。但是在許多情況下相對于CMA,DFE的收斂速度和穩態性能改善得并不明顯,尤其在信號的模值不是常數的情況下。這是因為基于CMA的DFE采用的是固定步長的常數模算法,而對于非常模信號,在星座圖中的任何一個信號都無法使CMA的代價函數為零,因此基于CMA的DFE就會發生過調,導致收斂慢,收斂后穩態誤差較大[34]。

  為了提高基于CMA的DFE的收斂速度,減小穩態誤差,本文提出一種改進的基于CMA的DFE盲均衡算法,該算法通過引入均方誤差作為調整步長的參量,把基于CMA的DFE盲均衡算法中前饋濾波器和反饋濾波器更新方程中的固定步長值變為可變值,以期獲得較好的均衡效果和收斂性能。

1基于CMA的DFE算法

  基于CMA的DFE算法由一個前饋濾波器和一個反饋濾波器組成,其中反饋濾波器由判決裝置輸出的判決驅動,其原理圖如圖1所示。

001.jpg

  圖1中,s(k)是獨立同分布的發射信號序列;C(k)是信道脈沖響應;n(k)是高斯白噪聲序列;y(k)是前饋濾波器輸出;z(k)是判決器的輸入;w(k)表示判決器的輸出信號。

  設前饋濾波器和反饋均衡器的輸入信號向量分別為:

  x(k)=[x(k),x(k-1),…,x(k-Lf+1)]T(1)

  w(k)=[w(k-1),w(k-2),…,w(k-Ld)]T(2)

  前饋濾波器和反饋均衡器的權系數向量分別為:

  F(k)=[f0(k),f1(k),…,fLf-1(k)](3)

  B(k)=[b0(k),b1(k),…,bLd-1(k)]T(4)

  則由圖1可知:

  z(k)=FT(k)x(k)-BT(k)w(k)(5)

  式中,Lf和Ld分別為前饋濾波器長度和反饋濾波器的長度,Lf、Ld均為正整數,T表示轉置。

  則基于CMA的DFE盲均衡算法的權系數迭代公式為:

  f(k+1)=f(k)-ufe(k)z(k)y*(k)

  b(k+1)=b(k)+ube(k)z(k)w*(k)(6)

  式(1)~式(6)構成的算法稱為基于CMA的DFE盲均衡算法。式(6)中,e(k)=|z(k)|2-R,R為常數模算法的模值,R=E[|s(k)|4]/E[|s(k)|2],‘*’表示共軛,uf和ub均為正實常數,分別為前饋濾波器和反饋濾波器更新方程中固定的迭代步長。即基于CMA的DFE算法采用的是固定步長的常數模算法來調整前饋濾波器和反饋濾波器的權系數。所以算法收斂慢,收斂后穩態誤差較大。

2改進的基于CMA的DFE盲均衡算法

  2.1算法原理

  為了提高基于CMA的DFE盲均衡算法的收斂速度,改善其均衡性能,研究人員提出了變步長思想[57],即在保證收斂的情況下,在迭代初期為了加快收斂速度,步長取較大的值,在算法接近收斂時,為了減小穩態誤差,步長取較小的值。根據這一原則,文獻[5]提出了一種基于Sigmoid函數的變步長盲均衡算法,即構造了一個關于瞬時誤差和步長因子的單調Sigmoid函數,改進算法不但具有較快的收斂速度且具有較小的穩態誤差。但Sigmoid函數過于復雜,而且誤差在接近零處變化太大,不具有緩慢變化的特性。對此本文對Sigmoid函數進行了改進,即通過引入均方誤差作為調整步長的參量,構造出指數型變步長函數,具體表達式如下:

  u(k)=c{1-exp[-d]}(7)

  其中,c,d為正常數,用于調整算法收斂速度及穩態誤差。

  將式(7)代入式(6),則抽頭系數權向量的更新方程變為:

  f(k+1)=f(k)-u(k)e(k)z(k)y*(k)

  b(k+1)=b(k)+u(k)e(k)z(k)w*(k)(8)

  式(1)~(5)和式(8)構成的算法稱為改進的基于CMA的DFE盲均衡算法。

  2.2算法的收斂性分析

  為了確保算法具有良好的收斂性和穩健性,步長因子必須滿足:

  0≤u(k)≤2/3tr(R)(9)

  式(9)中,R代表輸入信號的自相關矩陣,tr(R)代表該矩陣的跡。

  由式(7)可知:

  0≤1-exp[-d]}≤1(10)

  所以有:

  0≤c{1-exp[-d]}≤c(11)

  即:

  0≤u(k)≤c(12)

  所以c的取值要滿足:

  c≤2/3tr(R)(13)

  但滿足該條件的所有c和d對于步長的取值大小存在著局限性,為此c和d的取值要由理論分析、仿真分析和試驗來共同確定。

3仿真

  為了驗證新算法的性能,分別對基于CMA的DFE盲均衡算法和改進的基于CMA的DFE盲均衡算法進行了MATLAB仿真。

  仿真環境:發射信號采用4QAM的調制信號,信噪比為25 dB,前饋濾波器長度為Lf=33,采用中心抽頭初始化的方法;反饋濾波器長度Ld=17,抽頭系數初始化為全零值;迭代次數N=4 000,蒙特卡洛次數取400。在兩種不同的信道中對兩種算法進行仿真。

  3.1實驗1

  信道為:h=[-0.053,0.184,-0.35,0,0,1],基于CMA的DFE算法中前饋和反饋濾波器的迭代步長分別為0.000 75和0.06,改進的基于CMA的DFE算法中的步長按式(8)調整,變步長調整參數c、d分別為0.007和6.0,仿真結果如圖2所示。

 

002.jpg

  圖2(a)表明改進的基于CMA的DFE盲均衡算法大概經過1 500次迭代收斂,而基于CMA的DFE盲均衡算法大概需要經過2 500次迭代之后才趨于收斂,新算法比原算法將近快了1 000步。另外,由圖2(a)可知,改進的基于CMA的DFE盲均衡算法的穩態誤差比較小。圖2(b)、(c)表明,與基于CMA的DFE盲均衡算法相比,改進的基于CMA的DFE盲均衡算法輸出信號星座圖更加緊密集中、清晰,即改進算法取得了更好的均衡效果。

  3.2實驗2

  信道為:h=[0.212 2,0.104,0.890 8,0.213 4,-0.15,-0.083],基于CMA的DFE算法中前饋和反饋濾波器的迭代步長分別為0.000 6和0.075,改進的基于CMA的DFE算法中的步長按式(8)調整,變步長調整參數c、d分別為0.007和7.0,仿真結果如圖3所示。

  圖3(a)表明改進的基于CMA的DFE盲均衡算法大概經過2 000次迭代收斂,而基于CMA的DFE盲均衡算法大概需要經過3 000次迭代之后才趨于收斂,新算法比原算法快了1 000步左右。另外,由圖3(a)可知,改進的基于CMA的DFE盲均衡算法的穩態誤差比較小。從圖3(b)、圖3(c)可以看出,與基于CMA的DFE盲均衡算法相比,改進的基于CMA的DFE盲均衡算法輸出信號星座圖更加緊密集中、清晰,即改進算法取得了更好的均衡效果,具有更小的穩態誤差。

4結束語

  針對基于CMA的DFE盲均衡算法收斂速度慢、收斂后穩態剩余誤差大的缺點,構造了一種改進的基于CMA的DFE盲均衡算法。該算法把基于CMA的DFE盲均衡算法中前饋濾波器和反饋濾波器更新方程中的迭代步長由原來的固定值改成可變值,即通過引入均方誤差作為調整步長的參量,構造出指數型變步長函數。4QAM信號仿真結果表明,相對于固定步長的基于CMA的DFE盲均衡算法,改進算法不但具有較快的收斂速度而且具有較小的穩態誤差。

  參考文獻

  [1] 馮成旭,劉忠,羅亞松.穩健水聲信道判決反饋盲均衡算法研究[J].火力與指揮控制,2014,39(6):5-6.

  [2] 寧小玲,劉忠,羅亞松,等.一種改進的水聲信道載波恢復盲均衡算法[J].西安電子科技大學學報,2012,39(1):151-152.

  [3] 張銀兵,趙俊渭,郭業才.抑制α穩定噪聲的改進常數模盲均衡算法[J].西北工業大學學報,2010,28(2):202-206.

  [4] 郭業才,王南南.基于修正模判決的多模盲均衡算法研究[J].計算機應用研究,2014,31(8):2454-2455.

  [5] 劉建成,趙宏志,全厚德,等.迭代變步長LMS算法及性能分析[J].電子與信息學報,2015,37(7):1674-1675.

  [6] 宋志雄,喻翌,趙海全.基于箕舌線函數的變步長自適應諧波電流檢測算法[J].電力系統自動化,2013,37(22):54-59.

  [7] 張紅梅,韓萬剛.一種新的變步長LMS自適應濾波算法研究及其應用[J].儀器儀表學報,2015,36(8):1822-1830.


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 欧美一区二区三区久久综合 | 亚洲精品在线免费看 | 欧美日韩网站 | 国内黄色片| 日韩欧美影视 | 欧美日韩亚洲精品国产色 | 阿v精品一区二区三区 | 天天摸日日添狠狠添婷婷 | 777777农村一级毛片 | 国产精品边做边接电话在线观看 | avhd101av高清迷片在线 | 黄色成人一级片 | 亚洲欧美日韩精品久久奇米色影视 | 你懂得在线视频 | 国产成人www免费人成看片 | 亚洲成年看片在线观看男男 | 日本xx13一18处交高清 | 亚洲欧美日韩在线中文一 | 精品国产一区二区三区国产馆 | 国产69精品久久久久9牛牛 | 一区二区精品久久 | 99精品免费在线观看 | 久久成人免费播放网站 | 天天摸夜夜 | 日韩欧美在线观看成人 | 亚洲 欧美 日韩 在线 香蕉 | 国产精品人人视频 | 伦理在线观看 | 日韩特级毛片免费观看视频 | 日本aⅴ永久免费网站www | 很黄很黄很刺激的视频免费 | 黄瓜视频深夜释放自己 | 性欧美videofreel另类 | 午夜精品久久久久久久 | 一区二区三区精品牛牛 | 香蕉草草久在视频在线播放 | 免费成人毛片 | 一级黄色片一级黄色片 | 亚洲欧美人成人综合在线50p | 欧美一级片免费 | 美女网站大黄 |