1、泵工作期間,軸承最高溫度不超過80。
2、軸承溫升不得超過環境溫度40,最高溫度不得超過80。
3、泵在規定工況下運轉時,內裝式軸承處外表面溫度不應高出輸送介質溫度20,最高溫度不高于80。外裝式軸承處外表面溫升不應高處環境溫度40。最高溫度不高于80。
4、軸承的使用溫度。軸承溫升不得超過環境溫度35,最高溫度不得超過75。
5、軸承溫升不得超過環境溫度40,最高溫度不得超過80。
6、軸承溫升不得超過環境溫度35,最高溫度不得超過80。
規定是這樣,但是各個制造廠由于制造工藝不同可能會有點細微差別,但是不會太大的。
通常我們衡量電機發熱程度是采用“溫升”而不是用“溫度”,當“溫升”突然增大或超過最高工作溫度時,說明電機已發生故障。下面大蘭電機小編就一些基本概念和大家進行討論。
1、絕緣材料的絕緣等級:
絕緣材料按耐熱能力分為Y、A、E、B、F、H、C 7個等級,其極限工作溫度分別為90、105、120、130、155、180℃、及180℃以上。所謂絕緣材料的極限工作溫度,系指油泵電機在設計預期壽命內,運行時繞組絕緣中最熱點的溫度。根據經驗,A級材料在105℃、B級材料在130℃的情況下壽命可達10年,但在實際情況下環境溫度和溫升均不會長期達設計值,因此一般壽命在15~20年。如果運行溫度長期超過材料的極限工作溫度,則絕緣的老化加劇,壽命大大縮短。所以電機在運行中,溫度是壽命的主要因素之一。
2、溫升
溫升是電機與環境的溫度差是由電機發熱引起的。運行中的電機鐵芯處在交變磁場中會產生鐵損,繞組通電后會產生銅損,還有其它雜散損耗等。這些都會使電機溫度升高。另一方面電機也會散熱。當發熱與散熱相等時即達到平衡狀態,溫度不再上升而穩定在一個水平上。當發熱增加或散熱減少時就會破壞平衡,使溫度繼續上升,擴大溫差,則增加散熱,在另一個較高的溫度下達到新的平衡。但這時的溫差即溫升已比以前增大了,所以說溫升是電機設計及運行中的一項重要指標,標志著電動機的發熱程度,在運行中,如電機溫升突然增大,說明電機有故障,或風道阻塞或負荷太重。
3、溫升與氣溫等因素的關系:對于正常運行的電機,理論上在額定負荷下其溫升應與環境溫度的高低無關,但實際上還是受環境溫度等因素影響的。
(1) 當氣溫下降時,正常電機的溫升會稍許減少。 這是因為繞組電阻r下降,銅耗減少。溫度每降1℃,r約降0.4%。
(2) 對自冷電機,環境溫度每增10℃,則溫升增加1.5~3℃。這是因為繞組銅損隨氣溫上升而增加。所以氣溫變化對大型電機和封閉電機影響較大。
(3) 空氣濕度每高10%,因導熱改善,溫升可降0.07~0.38℃,平均為0.19℃。
(4) 海拔以1 000 m為標準,每升100 m,溫升增加溫升極限值的1%。
4、極限工作溫度與最高允許工作溫度
通常說a級的極限工作溫度為105℃,a級的最高允許工作溫度是90℃。那么,極限工作溫度與最高允許工作溫度有何不同?其實,這與測量方法有關,不同的測量方法,其反映出的數值不同,含義也不一樣。
(1)溫度計法 其測量結果反映的是繞組絕緣的局部表面溫度。這個數字平均比繞組絕緣的實際最高溫度即“最熱點”低15℃左右。該法最簡單,在中、小電機現場應用最廣。
(2)電阻法 其測量結果反映的是整個繞組銅線溫度的平均值。該數比實際最高溫度按不同的絕緣等級降低5~15℃。該法是測出導體的冷態及熱態電阻,按有關公式算出平均溫升。
(3)埋置溫度計試驗時將銅或鉑電阻溫度計或熱電偶埋置在繞組、鐵心或其它需要測量預期溫度最高的部件里。其測量結果反映出測溫元件接觸處的溫度。大型電機常采用此法來監視電機的運行溫度。各種測量方法所測量到的溫度與實際最高溫度都有一定差值,因此需將絕緣材料的“極限工作溫度”減去此差值才是“最高允許工作溫度”。
5、電機各部位的溫度限度
(1) 與繞組接觸的鐵心溫升(溫度計法)應不超過所接觸的繞組絕緣的溫升限度(電阻法),即A級為60℃,E級為75℃,B級為80℃,F級為100℃,H級為125℃。
(2) 滾動軸承溫度應不超過95℃,滑動軸承的溫度應不超過80℃。因溫度太高會使油質發生變化和破壞油膜。
(3) 機殼溫度實踐中往往以燙不燙手為判斷,但這與每人的觸覺有關,誤差較大,需積累一定經驗。