目前,基于通用GPU的邊緣計算處理器無法滿足日益增長的人工智能處理需求。以搭載有圖像識別和分析功能的邊緣計算設備為例,其系統功耗和發熱量與通用GPU相比有明顯增加,不得不通過提升成本擴容設備等方式滿足AI處理需求。
量化DNN引擎
為提高AI處理性能并減少系統功耗,Socionext開發了一款采用“量化DNN技術”的專有體系架構,它減少了深度學習所需的參數和激活位。該體系架構將1-bit (binary)、2-bit (ternary) 低比特率技術、傳統8-bit技術及公司獨創的參數壓縮技術結合,以較少的計算資源執行大量計算處理,并減少數據量。
除此以外,Socionext還開發了一種新穎的片上存儲技術,可提供高效的數據傳輸,從而減少深度學習通常所需的大容量片上或外部存儲器。
通過結合上述新技術,Socionext將AI芯片及“DNN引擎”原型化,并確認了其功能和性能。 原型化芯片通過“YOLO v3”以不到5W的低功耗及30fps的速度實現了目標檢測,其效率是通用GPU的10倍。 此外,該芯片還配備了高性能、低功耗的Arm Cortex-A系列CPU,無需外部處理器即可以單芯片執行整個AI處理。
深度學習軟件開發環境
除硬件開發外,Socionext還構建了深度學習軟件開發環境,通過結合TensorFlow作為基本框架,允許開發人員用原始低bit位進行量化感知訓練(Quantization Aware Training)和訓練后量化(Post Training Quantization)。
本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。