《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 基于灰色BP-NN優化組合的PM2.5預測
基于灰色BP-NN優化組合的PM2.5預測
2020年電子技術應用第6期
黃 鷹1,史愛武2,陳占龍1,張 威1
1.中國地質大學(武漢) 地理與信息工程學院,湖北 武漢430070;2.武漢紡織大學 計算機學院,湖北 武漢430070
摘要: 針對傳統的BP神經網絡模型無法有效表達時間序列數據中存在的歷史特征的缺陷,提出利用灰色預測原理具備發現事物歷史變化規律性的優勢來解決BP神經網絡預測模型的這一弱點,最后得到的灰色BP-NN優化組合模型具備了更高的預測精度。實驗采用中國氣象站2018年1月至2月北京市10個監測點的PM2.5質量濃度及其對應的每小時的空氣污染物濃度、氣象因子建立神經網絡預測模型,并采用灰色預測算法對神經網絡模型進行改進,改進后的結果為:在系統誤差上有了較大的降低,同時預測結果與實測結果之間的擬合程度更好。
中圖分類號: TN711;TP183
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.191101
中文引用格式: 黃鷹,史愛武,陳占龍,等. 基于灰色BP-NN優化組合的PM2.5預測[J].電子技術應用,2020,46(6):82-85,92.
英文引用格式: Huang Ying,Shi Aiwu,Chen Zhanlong,et al. PM2.5 prediction based on the optimal combination of grey BP neural network[J]. Application of Electronic Technique,2020,46(6):82-85,92.
PM2.5 prediction based on the optimal combination of grey BP neural network
Huang Ying1,Shi Aiwu2,Chen Zhanlong1,Zhang Wei1
1.School of Geography Information Engineering,China University of Geosciences,Wuhan 430070,China; 2.School of Mathematics and Computer,Wuhan Textile University,Wuhan 430070,China
Abstract: Aiming at the defect that the traditional BP neural network model cannot effectively express the historical features existing in time series data, a method with the combination of BP neural network and grey forecast principle was proposed. Furthermore, grey forecast principle has the advantage of discovering the laws of historical changes, which can overcome the weakness of BP neural network prediction model and this method have higher prediction accuracy. The neural network prediction model was established by using the PM2.5 mass concentration of ten monitoring stations in Beijing in January and February 2018, as well as the corresponding hourly air pollutant concentration and meteorological factors. Meanwhile, the grey forecast algorithm was used to improve the neural network model. The results indicate that the improved method has the features of lower system error, and better fitting degree between the predicted result and the measured result.
Key words : air pollution;PM2.5 concentration prediction;meteorological factors;neural network;grey forecast algorithm

0 引言

    近年來,基于神經網絡算法預測PM2.5成為PM2.5監測[1]研究的熱點。

    人工神經網絡具有很好的自適應性、自組織性和很強的自主學習能力[2-4]。采用人工神經網絡的方式去預測PM2.5濃度值具備很高的適用性[5]。但是直接采用典型的神經網絡方法在收斂速度和泛化能力上并不理想,所以一些學者通過用相關性分析的方法降低輸入樣本的維度,可以在一定程度上解決收斂速度的影響。張怡文和李鳳英等人分別采用了逐步回歸和Pearson相關系數的方法分析影響PM2.5相關因素的相關性,降低輸入樣本的維數,以此來提高算法的收斂速度[6-7]。針對常用的幾種神經網絡用于預測PM2.5濃度值的方法存在的局部極值問題,馬天成等人則是將粒子群算法(Particle Swarm Optimization,PSO)與模糊神經網絡進行融合,發揮PSO算法全局尋優的特點,預測PM2.5顆粒物濃度的變化規律[8];荊濤、李霖等人通過遺傳算法與BP(Back Propagation)神經網絡算法相結合的方式也解決了BP神經網絡算法訓練過程中的局部極值問題[9]。PM2.5數據及其相關影響因素數據都是具有一定時間相關性的時間序列數據,其具備一定的歷史特性,而BP神經網絡模型對這種特性無法進行有效的表達。裴雨瀟等人通過把PM2.5的數據構成時間序列,并進行小波變換,將低頻部分和高頻部分分別用不同的模型進行預測,再將預測值進行疊加,最后得到的結果比單純用BP神經網絡模型預測的效果要理想[10]。目前國內外研究PM2.5預測模型多是基于神經網絡結合其他算法進行模型的改進,這種方式相對比單純用神經網絡的方式在預測精度、泛化能力上都有較大的提升,但是PM2.5受其他因素的影響較大,考慮到從周圍環境的角度來建立PM2.5模型的方式,預測精度還可以有所提升。

    傳統的灰色預測模型(Grey Model,GM(1,1))將時間序列數據看成一個隨時間變化的函數,但經過大量的實驗表明經典灰色模型缺乏一定的預測穩定性,即使時間序列為純指數序列,在做長期預測時仍存在較大的偏差[11-12]。基于這個原因,謝乃明等人提出離散灰色預測模型(Discrete Grey Forecasting Model,DGM(1,1)),并經過實驗表明,DGM(1,1)相較于傳統的GM(1,1)模型即使在時間序列數據大致符合指數增長規律也具有較好的預測精度,且對于長期預測有一定的優勢[13]

    氣象因素和空氣質量因素均為典型的時間序列數據,但是分析影響PM2.5相關因素時,發現無論是氣象因素還是空氣質量因素都是震蕩序列,GM(1,1)和DGM(1,1)兩種模型對于單調遞增的時間序列數據都具備一定的預測精度,而對于震蕩序列的預測精度則不能夠確定。王巖、黃張裕等人提出一種基于震蕩序列的灰色預測模型(Stochastic Discrete Grey Forecasting Model,SDGM(1,1)),在進行震蕩序列預測時,能夠達到比較好的精度[14]




論文詳細內容請下載http://m.viuna.cn/resource/share/2000002852




作者信息:

黃  鷹1,史愛武2,陳占龍1,張  威1

(1.中國地質大學(武漢) 地理與信息工程學院,湖北 武漢430070;2.武漢紡織大學 計算機學院,湖北 武漢430070)

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 在线片视频网站 | 在线观看免费黄色网址 | 国产成人精品777 | 一级毛片免费 | 成人婷婷 | 特级毛片ww特级毛片w免费版 | 天天舔| 午夜a一级毛片一.成 | 午夜成a人片在线观看 | 看一级毛片女人洗澡 | 天天操天天玩 | 一级特级全黄 | 亚洲精品高清视频 | 最新亚洲情黄在线网站 | 天天精品视频在线观看资源 | 美国黄色一级毛片 | 天天看毛片 | 国产午夜亚洲精品不卡 | 成年人福利网站 | 日韩欧美成人免费中文字幕 | 美女视频黄a全部免费专区一 | 亚洲精品xxx | 久久午夜免费鲁丝片 | 91看片在线| 日韩一级精品久久久久 | 黄色片黄色片黄色片黄色片黄色片 | 黄色毛片国产 | 真人午夜a一级毛片 | 又黄又爽又色又刺激的视频 | 在线观看免费国产成人软件 | 欧美日韩在线视频免费完整 | 人人射人人 | 亚洲欧美在线视频免费 | 久久久精品2018免费观看 | 色天天综合网色鬼综合 | 男人趴在女人身上曰皮免费 | 一区二区亚洲视频 | 亚洲国产成人久久综合一 | 两个人看的www高清免费视频 | 日韩视频在线观看视频 | 亚洲视频一区网站 |