《電子技術應用》
您所在的位置:首頁 > 測試測量 > 設計應用 > 基于DAPA的卷積神經網絡Web異常流量檢測方法
基于DAPA的卷積神經網絡Web異常流量檢測方法
2020年信息技術與網絡安全第2期
高勝花,李世明,李秋月,於家偉,鄭愛勤
(1.哈爾濱師范大學 計算機科學與信息工程學院,黑龍江 哈爾濱 150025; 2.上海市信息安全綜合管理技術研究重點實驗室,上海 200240)
摘要: 針對Web攻擊流量檢測問題,提出一種基于動態自適應池化算法(Dynamic Adaptive Pooling Algorithm,DAPA)的卷積神經網絡模型。首先將數據集中每一條請求流量進行剪裁、對齊、補足等操作,生成一系列50×150的矩陣數據A作為輸入,然后搭建基于動態自適應的卷積神經網絡模型去進行異常流量檢測,使之可以根據特征圖的不同,動態地調整池化過程,在網絡結構中添加Dropout層來解決流量特征提取過程中的過擬合問題。實驗表明,該方法比未使用動態自適應池化的方式精確度提升了1.2%,損失值降低了2.6%,過擬合問題也得到了解決。
中圖分類號:TP393
文獻標識碼:A
DOI:10.19358/j.issn.2096-5133.2020.02.002
引用格式:高勝花,李世明,李秋月,等.基于DAPA的卷積神經網絡Web異常流量檢測方法[J].信息技術與網絡安全,2020,39(02):8-12.
A convolutional neural network Web abnormal flow detection method based on DAPA
Gao Shenghua1,Li Shiming1,2,Li Qiuyue1,Yu Jiawei1,Zheng Aiqin1(
(1.College of Computer Science and Information Engineering,Harbin Normal University,Harbin 150025,China; 2.Shanghai Key Laboratory of Information Security Management Technology Research,Shanghai 200240,China)
Abstract: Aiming at the problem of Web attack traffic detection,a convolutional neural network model based on Dynamic Adaptive Pooling Algorithm (DAPA) was proposed.Firstly,each request traffic in the data set is trimmed,aligned,and complemented to generate a series of 50 × 150 matrix data A as input.Then,a dynamic adaptive convolutional neural network model built to detect abnormal traffic can adjust the pooling process dynamically according to different feature maps,and a Dropout layer can be added to the network structure to solve the problem of overfitting in the flow feature extraction process.Experiments show that the method has an accuracy improvement of 1.2%,a loss value of 2.6%,and an overfitting problem is solved compared with the method without using dynamic adaptive pooling.
Key words : abnormal flow detection;convolutional neural network;dynamic adaptive pooling

0    引言

在網絡空間信息安全領域,網絡流量異常檢測對于保障網絡的正常運行和網絡的安全起著至關重要的作用。隨著網絡服務應用數據巨增,Web服務器遭受的攻擊數量越來越多,攻擊類型也越來越復雜,為保證向用戶提供持續、安全和可靠的應用服務,需要實時檢測出Web服務中的異常流量。現有的Web異常流量檢測方法大多數為誤用檢測或是基于傳統的機器學習算法檢測;誤用檢測是根據已知攻擊行為為主要特征,將入侵行為與正常行為根據已知特征加以區分來實現入侵行為的檢測,該類方法效率高且誤報率低,但只能發現已知的入侵類型,漏報率較高,特征的維護多采用人工方式完成。傳統機器學習檢測算法依靠手工提取流量中的特征,人為干預較嚴重。




本文詳細內容請下載:http://m.viuna.cn/resource/share/2000003151





作者信息:

高勝花,李世明,李秋月,於家偉,鄭愛勤

(1.哈爾濱師范大學 計算機科學與信息工程學院,黑龍江 哈爾濱 150025;

2.上海市信息安全綜合管理技術研究重點實驗室,上海 200240)


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 最近免费中文字幕大全视频 | 免费a视频 | 成年人在线看片 | 日韩网| 97免费在线观看视频 | 日韩中文字幕免费版 | 99re视频这里只有精品 | 成人精品视频一区二区在线 | 国产欧美在线观看不卡一 | 窝窝午夜影院 | 男女羞羞的视频网站在线观看 | 亚洲成年人影院 | 日本全黄录像视频 | 搜索毛片| 爱性大片在线观看 | 91精品一区二区三区在线播放 | 成人毛片视频免费网站观看 | 国内日本精品视频在线观看 | www.黄网| 中文字幕成人免费高清在线视频 | 一级黄色夫妻录像 | 中日韩免费视频 | 在线视频一区二区三区三区不卡 | 免费在线视频成人 | 国产成人免费a在线资源 | 毛片a级毛片免费播放100 | 俄罗斯一级毛片免费播放 | 天堂在线www网亚洲 天堂网在线网站成人午夜网站 | 国产一区二卡三区四区 | 新有菜在线 | 国产 日韩 欧美 在线 | 青草视频网站 | 国产高清视频在线观看不卡v | 久久精品中文字幕第一页 | 青草视频青年娱乐 | 麻豆一区区三三四区产品麻豆 | 日本免费中文字幕在线看 | 女性一级全黄生活片 | 亚洲人成毛片线播放 | 国产高清在线精品一区在线 | 亚洲最大激情网 |