《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 人工智能 > 設(shè)計(jì)應(yīng)用 > 基于CNN-LightGBM模型的高速公路交通量預(yù)測
基于CNN-LightGBM模型的高速公路交通量預(yù)測
2020年信息技術(shù)與網(wǎng)絡(luò)安全第2期
張振,曾獻(xiàn)輝
(1.東華大學(xué) 信息科學(xué)與技術(shù)學(xué)院,上海 201620; 2. 數(shù)字化紡織服裝技術(shù)教育部工程研究中心,上海 201620)
摘要: 有效的交通流量預(yù)測對人們出行和交管部門監(jiān)管都有著重要的意義。傳統(tǒng)的交通量預(yù)測模型主要基于交通流的時(shí)間特性,未結(jié)合交通流的時(shí)間和空間特性進(jìn)行深入挖掘,因此預(yù)測效果有時(shí)不佳。提出了一種基于CNN與LightGBM結(jié)合的交通流預(yù)測模型,首先利用CNN模型挖掘出高速公路相鄰路段監(jiān)測點(diǎn)和出入口的時(shí)間和空間關(guān)聯(lián)性,實(shí)現(xiàn)對交通流數(shù)據(jù)的時(shí)空特征提取,然后將CNN提取到的特征向量輸入到LightGBM模型中進(jìn)行預(yù)測。為了驗(yàn)證模型的有效性,實(shí)驗(yàn)中使用了多種預(yù)測模型進(jìn)行對比,實(shí)驗(yàn)結(jié)果表明,所提出的考慮到時(shí)空特性的CNNLightGBM組合的模型可以明顯降低預(yù)測誤差,是一種有效快速的交通流預(yù)測模型。
中圖分類號:U491.1
文獻(xiàn)標(biāo)識碼:A
DOI: 10.19358/j.issn.2096-5133.2020.02.007
引用格式:張振,曾獻(xiàn)輝.基于CNN-LightGBM模型的高速公路交通量預(yù)測[J].信息技術(shù)與網(wǎng)絡(luò)安全,2020,39(2):34-39.
Prediction of highway traffic flow based on CNN-LightGBM model
Zhang Zhen1, Zeng Xianhui1, 2
(1.School of Information Science and Technology,Donghua University,Shanghai 201620,China; 2.Engineering Research Center of Digitalized Textile & Fashion Technology,Ministry of Education,Shanghai 201620,China)
Abstract: Effective traffic flow forecasting is of great significance to people′s travel and traffic management supervision.Traditional traffic volume prediction models are mainly based on the time characteristics of traffic flow,however,these models don′t combine the time and space characteristics of traffic flow for in-depth mining,so sometimes these models don′t perform well.This paper proposes a traffic flow prediction model based on the combination of CNN and LightGBM. The CNN model is used to excavate the temporal and spatial correlation between the monitoring points and the entrances and exits of the adjacent sections of the highway to realize the spatiotemporal feature extraction of the traffic flow data,and then the feature vector extracted by CNN is input into the LightGBM model for prediction.In order to verify the effectiveness of the model,a variety of prediction models are used in the experiment for comparison.The experimental results show that the proposed model of CNN-LightGBM considering the spatio-temporal characteristics can significantly reduce the prediction error and is an effective and fast traffic flow forecasting model.
Key words : traffic flow prediction;CNN-LightGBM; spatiotemporal correlation;highway

0    引言

準(zhǔn)確的交通量預(yù)測是當(dāng)今智慧交通的重要基礎(chǔ),是交通狀況判別的重要基石之一。人們從上個世紀(jì)開始就在交通流預(yù)測領(lǐng)域做了很多交通預(yù)測研究,截止目前為止常見的交通量預(yù)測方法主要包括基于統(tǒng)計(jì)的預(yù)測方法、基于時(shí)間序列的交通量預(yù)測方法、基于神經(jīng)網(wǎng)絡(luò)的交通量預(yù)測方法以及基于機(jī)器學(xué)習(xí)的交通量預(yù)測方法幾種。

基于統(tǒng)計(jì)的交通量預(yù)測方法較多,比如多元線性回歸法、卡爾曼濾波器和K近鄰算法等,這些方法主要根據(jù)歷史流量數(shù)據(jù)預(yù)測未來交通流量分布,但是這些方法無法精準(zhǔn)地預(yù)測道路短期擁堵的情況。基于時(shí)間序列的交通量預(yù)測方法如差分自回歸滑動平均模型,主要是將歷史的流量數(shù)據(jù)按照時(shí)間排列成為時(shí)間序列,根據(jù)時(shí)間序列分析數(shù)據(jù)流的變化趨勢從而預(yù)測未來的交通流量,但是這種算法的缺點(diǎn)是在處理數(shù)據(jù)量較大、維度較高的數(shù)據(jù)時(shí)效果一般,推廣能力較差。基于神經(jīng)網(wǎng)絡(luò)交通量預(yù)測方法如GRU和LSTM,這些模型存在著計(jì)算過程中收斂速度慢、計(jì)算時(shí)間較長、容易過擬合等缺點(diǎn)。基于機(jī)器學(xué)習(xí)的交通量預(yù)測方法如GBDT模型、Xgboost模型和隨機(jī)森林模型,這些模型對交通流時(shí)空挖掘效果不大理想。





本文詳細(xì)內(nèi)容請下載:http://m.viuna.cn/resource/share/2000003156





作者信息:

張振,曾獻(xiàn)輝

(1.東華大學(xué) 信息科學(xué)與技術(shù)學(xué)院,上海 201620;

2. 數(shù)字化紡織服裝技術(shù)教育部工程研究中心,上海 201620)


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 亚洲小视频| 日本一道本在线视频 | 国产精品免费视频能看 | 国产一区二区在线观看麻豆 | 精品一区二区在线观看 | 好爽好黄的视频 | 国产二区三区毛片 | 亚洲午夜视频 | 大伊香蕉在线精品视频人碰人 | 网站免费满18成年在线观看 | 中文字幕免费在线 | 丁香婷婷亚洲六月综合色 | 在线你懂的 | 久久婷婷五月综合色丁香 | 成人嗯啊视频在线观看 | h在线国产| 婷婷免费高清视频在线观看 | 天天伊人网 | 男人的天堂黄色 | 一本大道香蕉视频在线观看 | 久久久这里只有免费精品2018 | 亚洲第一色网站 | 一个人看的视频www在线 | 1024手机在线播放 | 狠狠狠色 | 国产精品久久久久影院色老大 | 国产一二三四区在线观看 | 草草草在线观看 | 第一色影院 | 日本老年人精品久久中文字幕 | 亚洲欧美日韩中文字幕网址 | 2019偷偷狠狠的日日 | 中文字幕在线乱人伦 | 日韩图区| 黄色三级日本 | 高h猛烈做哭bl壮汉受欧美 | 无码免费一区二区三区免费播放 | 午夜免费观看 | 欧美日本一道免费一区三区 | 白洁性荡生活l六 | 99re视频这里只有精品 |