文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200555
中文引用格式: 陳利,劉艷艷. 基于改進的Faster R-CNN的古建筑地磚缺陷檢測[J].電子技術應用,2021,47(1):31-35.
英文引用格式: Chen Li,Liu Yanyan. Defects detection of floor tiles of ancient buildings based on Faster R-CNN[J]. Application of Electronic Technique,2021,47(1):31-35.
0 引言
隨著科技高速發展,對文物的保護和修繕越來越得到重視。傳統對文物的缺陷檢測主要依靠人力進行目視檢查,但容易受到天氣、時間等原因影響。地磚缺陷具有形狀不規則、背景噪聲系數大等特征,目前大多數缺陷檢測算法都是根據應用場景不同進行手工提取缺陷特征,直接或者通過機器學習算法進行分類[1]。這種有監督機器學習存在一定局限性,受圖片中缺陷類別數目、特征形狀等因素影響,人為提取特征需要具有很強的專業性,檢測結果不好,魯棒性差,所以不能很好地適用于對地磚缺陷檢測。
隨著計算機視覺不斷發展,深度學習作為計算機視覺的分支,越來越受到人們重視,目標檢測是深度學習的廣泛應用之一。近些年來,目標檢測取得了很大突破。目標檢測主要分為兩類:一類是基于候選框的R-CNN(Region Convolutional Neural Network)系列算法,如R-CNN、Fast R-CNN(Fast Region Convolutional Neural Network)、Faster R-CNN(Faster Region Convolutional Neural Network)[2],它們是生成候選框后進行分類和位置回歸;另一類是YOLO(You Only Look Once)[3]、SSD(Single Shot MultiBox Detector),從回歸角度出發,直接在圖像中回歸出目標邊框和位置,這類算法僅使用一個卷積神經網絡。第一類方法準確度高,速度慢;第二類算法速度快,可以到達實時檢測,但是準確性低。
目前基于深度學習的目標檢測算法很多,應用在目標檢測的效果也很突出[4-6],但是現有算法在缺陷檢測中并不能很好地體現出來[7-9],尤其是在地磚缺陷檢測中,現有目標檢測算法受限于地磚特征的多樣性以及紋理特性。為此,本文提出了一種基于改進型Faster R-CNN網絡用于檢測地磚缺陷。對卷積核中每個采樣點位置都增加了一個偏移變量,通過這些變量,卷積核就可以在當前位置附近隨意采樣,而不再局限于之前的規則格點,形狀多變的感受野豐富了語義信息,從而提高檢測精度[3]。
本文詳細內容請下載:http://m.viuna.cn/resource/share/2000003301
作者信息:
陳 利1,2,劉艷艷1,2
(1.南開大學 光電子薄膜器件與技術天津市重點實驗室,天津300350;
2.南開大學 薄膜光電子技術教育部工程研究中心,天津300350)