《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 機器學習中的成員推斷攻擊與防御研究
機器學習中的成員推斷攻擊與防御研究
信息技術與網(wǎng)絡安全
王鵬焱
(安徽理工大學 計算機科學與工程學院,安徽 淮南232001)
摘要: 隨著機器學習滲透到日常生活中的各個方面,其數(shù)據(jù)隱私問題受到越來越多的關注。成員推斷攻擊是機器學習算法面臨的安全威脅之一,用于推斷特定數(shù)據(jù)是否存在于機器學習模型的訓練集中,給用戶帶來極大的安全隱患,對機器學習模型的安全性提出挑戰(zhàn)。為此,研究成員推斷攻擊不僅能發(fā)現(xiàn)隱私數(shù)據(jù)面臨的威脅,而且還能為防御技術的提出提供思路。對近年來有關成員推斷攻擊的研究進行詳細的分析,按照應用場景的不同將攻擊分為判別模型攻擊、生成模型攻擊以及聯(lián)邦學習攻擊三類。同時根據(jù)成員推斷攻擊和防御的發(fā)展現(xiàn)狀,闡述了影響攻擊的因素以及經(jīng)典的防御策略。最后指出成員推斷攻擊中仍需解決的問題以及未來的發(fā)展方向。
中圖分類號: TP309
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.08.011
引用格式: 王鵬焱. 機器學習中的成員推斷攻擊與防御研究[J].信息技術與網(wǎng)絡安全,2021,40(8):65-70,83.
Reasearch on membership inference attack and defense in machine learning
Wang Pengyan
(School of Computer Science and Engineering,Anhui University of Science and Technology,Huainan 232001,China)
Abstract: As machine learning penetrates into all aspects of daily life, its data privacy issues have received more and more attention. Membership inference attacks are one of the security threats faced by machine learning algorithms. They are used to infer whether specific data exists in the training set of machine learning models, which brings great security risks to users and poses challenges to the security of machine learning models. To this end, the researchers inferred that attacks can not only discover threats to private data, but also provide ideas for the proposal of defense technologies. This article conducts a detailed analysis of the research on membership inference attacks in recent years, and divides the attacks into three types: discriminative model attacks, generative model attacks, and federated learning attacks according to different application scenarios. At the same time, according to the development status of membership inference attacks and defense, this paper expounds the factors that affect the attack and the classic defense strategies. Finally, it points out the problems that need to be solved in the membership inference attacks and the future development direction.
Key words : machine learning;membership inference attack;privacy security;defense technology

0 引言

機器學習在智能醫(yī)療、圖像識別、推薦系統(tǒng)、情感分析[1-4]等領域得到快速的發(fā)展,加速了傳統(tǒng)行業(yè)的智能化發(fā)展。然而,用于訓練機器學習模型的大量數(shù)據(jù)不可避免地包含敏感信息,機器學習的蓬勃發(fā)展在改變?nèi)藗兩罘绞降耐瑫r,也給數(shù)據(jù)隱私安全帶來嚴峻的威脅。例如,一個基于癌癥病人信息訓練的模型,如果知道了某病人是該模型的訓練集成員,可以直接推斷出該病人的患病信息并由此可能引發(fā)歧視問題[5]。這種推斷數(shù)據(jù)是否存在于訓練集的算法稱為成員推斷攻擊,近年來成為研究者關注的熱點。 




本文詳細內(nèi)容請下載:http://m.viuna.cn/resource/share/2000003728




作者信息:

王鵬焱

(安徽理工大學 計算機科學與工程學院,安徽 淮南232001)


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉(zhuǎn)載。
主站蜘蛛池模板: 久久狠狠色噜噜狠狠狠狠97 | 波多野结衣一区免费作品 | 午夜伦理宅宅235 | 午夜影院免费入口 | 久久久视 | 7m福利视频导航精品 | 手机在线看片国产 | 国产欧美日韩视频免费61794 | 特级淫片波多野结衣 | 97青青草原国产免费观看 | 日本欧美在线观看 | 日韩福利片午夜在线观看资源 | 99re在线观看视频 | 精品日韩二区三区精品视频 | 日本黄网站 | 色天使亚洲综合在线观看 | 麻豆va在线精品免费播放 | 国产精品入口麻豆免费观看 | 亚洲视频在线观看视频 | 羞羞视频免费网站欧美 | 欧美精品4kvideofree | h在线播放 | 黄漫无遮挡免费网站3d | 亚洲国产成人九九综合 | 欧美午夜在线播放 | 亚洲二区在线 | 黄网在线免费看 | 精品国产乱码一区二区三区 | 久久亚洲不卡一区二区 | 成人免费看片视频色多多 | 国产情精品嫩草影院88av | 国产午夜影院 | 免费网站成人亚洲 | 欧美中文字幕无线码视频 | 日本高清视频wwww色 | 欧美大交乱xxxx | 91亚洲欧美综合高清在线 | 日韩欧美在线观看一区 | 免费看污的视频网站 | 欧日韩一区二区三区 | 亚洲欧美一区二区三区在线播放 |