《電子技術應用》
您所在的位置:首頁 > 電子元件 > 設計應用 > 使用Xcelium Machine Learning技術加速驗證覆蓋率收斂
使用Xcelium Machine Learning技術加速驗證覆蓋率收斂
2023年電子技術應用第8期
植玉1,馬業欣1,徐嶸2
(1.深圳市中興微電子技術有限公司,廣東 深圳 518054;2.楷登企業管理(上海)有限公司深圳分公司,廣東 深圳 518000)
摘要: 隨著設計越來越復雜,受約束的隨機化驗證方法已成為驗證的主流方法。一般地,驗證激勵做到不違反spec描述條件下盡量隨機,這樣驗證能跑到的空間才更充分。但是,這給功能覆蓋率收斂帶來極大挑戰,為解決這一難題,Cadence率先推出了仿真器的機器學習功能——Xcelium Machine Learning,采用機器學習技術讓功能覆蓋率快速收斂,大大提高驗證仿真效率。介紹了Xcelium Machine Learning的使用流程,并給出在相同模擬(simulation)驗證環境下應用Machine Learning前后情況對比。最后Machine Learning在模擬(simulation)驗證中的應用前景進行了展望。
中圖分類號:TN402 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.239805
中文引用格式: 植玉,馬業欣,徐嶸. 使用Xcelium Machine Learning技術加速驗證覆蓋率收斂[J]. 電子技術應用,2023,49(8):19-23.
英文引用格式: Zhi Yu,Ma Yexin,Xu Rong. Accelerating verification coverage convergence using Xcelium Machine Learning technology[J]. Application of Electronic Technique,2023,49(8):19-23.
Accelerating verification coverage convergence using Xcelium Machine Learning technology
Zhi Yu1,Ma Yexin1,Xu Rong2
(1.Shenzhen Sanechips Technology Co., Ltd., Shenzhen 518054,China;2.Cadence Design Systems, Shenzhen 518000,China)
Abstract: As designs become more complex, constrained randomized verification methods have become the mainstream method for verification. Generally, the verification incentive should be as random as possible without violating the spec description condition, so that the space that the verification can cover is more sufficient. However, this brings great challenges to the convergence of functional coverage. To solve this problem, Cadence pioneered the machine learning function of the simulator - Xcelium Machine Learning, which uses machine learning technology to quickly converge the functional coverage and greatly improve the efficiency of verification simulation. This article mainly introduces the process of using Xcelium Machine Learning and gives a comparison before and after using machine learning in the same simulation verification environment. Finally, the application prospect of machine learning in simulation verification is prospected.
Key words : random test;constrained random;functional coverage;machine learning;simulation

0 引言

覆蓋率驅動的隨機測試生成方法是目前隨機測試生成技術研究的熱點,其目標是為了提高驗證的自動化程度,加快驗證收斂過程,提高驗證效率,即通過覆蓋率指導測試向量生成,進一步減少重復測試向量,加速功能驗證收斂[1]。

如圖1所示,通常地,為加快覆蓋率收斂,驗證人員根據覆蓋率分析結果,找到相關隨機點乃至隨機變量進行分析,然后合理地調整隨機變量的相應約束,反復迭代以達成覆蓋率收斂的目標。這樣做,存在三個問題:(1)浪費人力,重復的事情本應留給程序去做而人來做了;(2)陷入驗證方法學應用誤區,驗證方法的天平嚴重偏向了定向驗證,隨機激勵隨機力度不夠;(3)增加漏測風險,壓縮了隨機空間,可能會導致存在缺陷的空間未能隨機到而錯過發現缺陷的機會。



本文詳細內容請下載:http://m.viuna.cn/resource/share/2000005480




作者信息:

植玉1,馬業欣1,徐嶸2

(1.深圳市中興微電子技術有限公司,廣東 深圳 518054;2.楷登企業管理(上海)有限公司深圳分公司,廣東 深圳 518000)

微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 波多野结衣手机在线视频 | 4四虎44虎www在线影院麻豆 | 欧美a在线视频 | 亚洲人成网址在线播放a | 国产精品一区牛牛影视 | 韩国一级做a爰片性色毛片 韩国一级黄色大片 | 欧美一级欧美一级在线播放 | 日本激情在线看免费观看视频 | 中国日韩欧美中文日韩欧美色 | 日本一区二区成人教育 | 日本欧美一区二区三区片 | 奇米影视777四色米奇影院 | 亚洲福利二区 | 日韩大片免费在线观看 | 大色综合色综合网站 | 天天做天天爽爽快快 | 人人爽天天爽 | 一级美国乱色毛片 | 亚洲精品性夜夜夜 | 日日狠狠的日日日日 | 久久精品成人国产午夜 | 国产观看精品一区二区三区 | 人人欧美 | 成免费视频 | 男女视频在线观看网站 | 在线一本 | 天天操天天操天天 | a级毛片免费网站 | 欧美视频综合 | 欧美成人免费观看国产 | 99re在线精品视频 | 妞干网在线播放 | 国产一在线精品一区在线观看 | 久久精品国产波多野结衣 | 亚洲第一成年人网站 | 久操视频在线观看 | 日韩在线视精品在亚洲 | 午夜影院啪啪 | 爽爽免费视频 | 香港三级日本三级三级人妇99 | 波多一区|