基于知識圖譜技術的上市企業產業鏈風險預測
網絡安全與數據治理 9期
董士豪,鄭朗,王特,于曉娟,王耀君
(中國農業大學信息與電氣工程學院,北京100038)
摘要: 隨著產業互聯網的飛速發展,面對海量的產業數據,構建知識圖譜等自然語言處理應用需求逐漸增長。產業信息的有效管理和挖掘有助于及時發現所面臨的風險和機遇,產業鏈風險預測可以為監管部門提供產業風險預警手段。針對以上問題,本文以知識圖譜相關知識為科學依據,提出了基于知識圖譜技術的產業文本數據實體標注準則,對海量上市公司產業信息進行知識抽取,形成自上而下的三維產業知識圖譜。同時研究了上市企業產業知識圖譜特定產業鏈知識的內在聯系,總結規律并結合產業鏈往年時序圖特征信息實現圖譜推理,成功的對產業鏈中上市企業市值等信息進行了預測和分析。
中圖分類號:F830
文獻標識碼:A
DOI:10.19358/j.issn.2097-1788.2023.09.004
引用格式:董士豪,鄭朗,王特,等.基于知識圖譜技術的上市企業產業鏈風險預測[J].網絡安全與數據治理,2023,42(9):21-28.
文獻標識碼:A
DOI:10.19358/j.issn.2097-1788.2023.09.004
引用格式:董士豪,鄭朗,王特,等.基于知識圖譜技術的上市企業產業鏈風險預測[J].網絡安全與數據治理,2023,42(9):21-28.
Risk prediction of the industrial chain of listed enterprises based on knowledge graph technology
Dong Shihao,Zheng Lang,Wang Te,Yu Xiaojuan,Wang Yaojun
(College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)
Abstract: With the rapid development of the industrial Internet, the demand for natural language processing applications such as building knowledge graphs is gradually increasing in the face of massive industrial data. The effective management and mining of industrial information can help to discover the risks and opportunities faced in time, and the risk prediction of the industrial chain can provide regulatory authorities with early warning means for industrial risks. In view of the above problems, this paper takes the knowledge related to knowledge graph as the scientific basis, and puts forward the criteria for labeling industrial text data entities based on knowledge graph technology, extracts knowledge from massive listed companies′ industrial information, and forms a topdown threedimensional industrial knowledge map. At the same time, the intrinsic relationship of specific industrial chain knowledge of listed enterprises in the industrial knowledge graph is studied, the law is summarized, and the graph reasoning is realized by combining the characteristic information of the time series chart of the industrial chain in previous years, and the market value of listed enterprises in the industrial chain is successfully predicted and analyzed
Key words : knowledge graph; industry chain analysis; risk prediction; entity relationship callouts
0 引言
產業知識圖譜是結構化的產業語義知識庫,通過形式化描述產業領域的概念、實體、屬性及其相互關系,使概念、實體間相互聯結,構成網狀知識結構。產業涉及范圍廣泛,本研究以產業大類中的上市企業、基金、上市企業業務鏈、產業鏈、基金經理和股東等為研究對象,形成了知識覆蓋面廣、數據更新實時、精準度高的自上到下的三維度產業知識圖譜。根據中國產業經濟信息網和中國證券業協會規定的18大類產業為第一維度知識;以上市企業、基金、基金經理和股東組成的第二維度知識;再到第三維度的公司業務鏈知識,最終完成了產業知識圖譜的構建。根據研究目標及思路,下文確定了數據獲取方向和主要的獲取方法。
本文詳細內容請下載:http://m.viuna.cn/resource/share/2000005656
作者信息:
董士豪,鄭朗,王特,于曉娟,王耀君
(中國農業大學信息與電氣工程學院,北京100038)
此內容為AET網站原創,未經授權禁止轉載。