注意力特征融合SSD算法對遙感圖像的目標檢測 | |
所屬分類:技術論文 | |
上傳者:zhoubin333 | |
文檔大?。?span>723 K | |
標簽: 遙感圖像 目標識別 注意力特征融合 | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹: 針對多尺度單發射擊檢測(Single Shot MultiBox Detector,SSD)算法對小目標物體檢測效果不佳的問題,提出注意力特征融合SSD(Attention Feature Fusion SSD,AFF-SSD)算法。首先,為了提升網絡對小目標物體的檢測性能,使用注意力特征融合模塊對淺層特征圖中的特征信息融合,在降低噪聲的同時增強特征圖中遠距離像素的相關性;其次,針對訓練過程中正負樣本失衡導致的模型退化問題,結合聚焦分類損失函數對SSD算法中的損失函數優化;最后,引入遷移學習解決因訓練數據較少導致的過擬合問題。實驗結果表明,與SSD算法相比,AFF-SSD算法平均準確率均值提高8.09%,經過遷移學習后,AFF-SSD算法平均準確率均值提高3.47%。 | |
現在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統工程研究所版權所有 京ICP備10017138號-2