基于多尺度注意力融合網絡的胃癌病理圖像分割方法* | |
所屬分類:技術論文 | |
上傳者:zhoubin333 | |
文檔大小:4827 K | |
標簽: 病理圖像 圖像分割 注意力融合 | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:近年來,隨著深度學習技術的發展,基于編解碼的圖像分割方法在病理圖像自動化分析上的研究與應用也逐漸廣泛,但由于胃癌病灶復雜多變、尺度變化大,加上數字化染色圖像時易導致的邊界模糊,目前僅從單一尺度設計的分割算法往往無法獲得更精準的病灶邊界。為優化胃癌病灶圖像分割準確度,基于編解碼網絡結構,提出一種基于多尺度注意力融合網絡的胃癌病灶圖像分割算法。編碼結構以EfficientNet作為特征提取器,在解碼器中通過對多路徑不同層級的特征進行提取和融合,實現了網絡的深監督,在輸出時采用空間和通道注意力對多尺度的特征圖進行注意力篩選,同時在訓練過程中應用綜合損失函數來優化模型。實驗結果表明,該方法在SEED數據集上Dice系數得分達到0.806 9,相比FCN和UNet系列網絡一定程度上實現了更精細化的胃癌病灶分割。 | |
現在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統工程研究所版權所有 京ICP備10017138號-2