基于自監督圖神經網絡和混合神經網絡的入侵檢測 | |
所屬分類:技術論文 | |
上傳者:wwei | |
文檔大小:911 K | |
標簽: 自監督學習 圖神經網絡 混合神經網絡 | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:為了解決現有網絡入侵檢測方法在特征提取單一、數據依賴強以及模型泛化能力差等方面的問題,提出了一種基于自監督圖神經網絡和混合神經網絡的入侵檢測方法。首先,通過自監督學習策略,利用圖卷積網絡提取網絡流量數據中的結構特征,增強模型在無標簽數據上的特征學習能力,從而降低對標注數據的依賴并提升泛化能力。其次,使用卷積神經網絡提取網絡流量中時間序列的空間特征,并通過長短時記憶網絡建模時間依賴性,進行多視角特征提取,提高檢測的全面性。最后,設計了一種特征融合策略,豐富模型特征表示,提升模型魯棒性。在公開數據集上的實驗結果表明,所提方法具有更高的準確率和F1值。 | |
現在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統工程研究所版權所有 京ICP備10017138號-2