《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 單電源運(yùn)算放大器輸出不能實(shí)現(xiàn)軌對(duì)軌擺動(dòng)
單電源運(yùn)算放大器輸出不能實(shí)現(xiàn)軌對(duì)軌擺動(dòng)
摘要: 單電源運(yùn)算放大器不能真正實(shí)現(xiàn)輸出的軌對(duì)軌擺動(dòng)。接近軌時(shí),放大器呈現(xiàn)出非線性。對(duì)線性工作,單電源放大器的輸出每軌都能達(dá)到50到300mV。
Abstract:
Key words :

  采購(gòu)員謹(jǐn)防:輸出擺幅達(dá)到最大值之前,線性就已經(jīng)開(kāi)始下降。

  單電源運(yùn)算放大器不能真正實(shí)現(xiàn)輸出的軌對(duì)軌擺動(dòng)。接近軌時(shí),放大器呈現(xiàn)出非線性。對(duì)線性工作,單電源放大器的輸出每軌都能達(dá)到50到300mV(圖1)。

對(duì)線性工作

  單電源放大器,軌對(duì)軌輸出的廣告造成安全的錯(cuò)覺(jué)。圖1顯示了驅(qū)動(dòng)軌輸出時(shí),典型單電源放大器的輸出擺幅。

 

  在輸出擺幅達(dá)到最大值之前,放大器的線性就已經(jīng)開(kāi)始大幅下降,放大器輸出不能達(dá)到任何電源電壓。

  為使直流開(kāi)環(huán)增益指標(biāo)達(dá)到要求,只有假設(shè)放大器處于線性工作輸出范圍。直流開(kāi)環(huán)增益用分貝表示為20 log(ΔVOUT/ΔVOS),其中VOUT為電壓輸出,VOS為輸入偏置電壓。驅(qū)動(dòng)輸出為高時(shí),VH為輸出直流開(kāi)環(huán)增益測(cè)量的最大電壓。VOH為相對(duì)于輸出所能達(dá)到VDD的絕對(duì)電壓最大值。VL為輸出直流開(kāi)環(huán)增益測(cè)量的最小電壓,VOL為輸出所能達(dá)到的絕對(duì)電壓最小值。VH小于VOH,而VL大于VOL。

  從信號(hào)流的觀點(diǎn)看,運(yùn)算放大器驅(qū)動(dòng)ADC時(shí),輸出限制軌對(duì)軌擺幅。圖2a中FFT圖顯示了5V系統(tǒng)中,放大器結(jié)合ADC對(duì)1KHz信號(hào)的響應(yīng)。放大器典型的閉環(huán)帶寬約為3MHz,上升速率為2.3V/µsec。放大器輸出電壓在140 mV到4.66V擺動(dòng)。在5V供電系統(tǒng)中,信號(hào)到電源的差距為140 mV。對(duì)這個(gè)放大器,VOL最小為比地電壓高15 mV,而VOH最大為VDD–20 mV。

  圖2a通過(guò)顯示2、3、4kHz等頻率下的失真,說(shuō)明了單電源供電的CMOS放大器輸出范圍的非線性。通過(guò)減少每個(gè)軌的放大器輸出信號(hào)到272 mV,在僅有ADC失真時(shí)數(shù)據(jù)理想。(圖2b)

通過(guò)顯示2、3、4kHz等頻率下的失真,說(shuō)明了單電源供電的CMOS放大器輸出范圍的非線性。通過(guò)減少每個(gè)軌的放大器輸出信號(hào)到272 mV,在僅有ADC失真時(shí)數(shù)據(jù)理想

點(diǎn)擊看原圖

 

 

  使用單電源運(yùn)放,要仔細(xì)閱讀手冊(cè)。一些單電源運(yùn)放有輸出域電荷泵,允許放大器輸出擺動(dòng)達(dá)到和超出供電電源軌。在任何情況下,務(wù)必要讀數(shù)據(jù)手冊(cè)和參考開(kāi)環(huán)增益測(cè)試條件。

  英文原文:

  Single-supply amplifier outputs don't swing rail to rail

  Buyer beware: Linearity starts to degrade long before reaching the output-swing maximums.

  By Bonnie Baker -- EDN, 9/3/2007

  Single-supply amplifiers do not truly swing rail to rail at the output. Near the rail, the amplifier is nonlinear. For linear operation, the output of single-supply amplifiers can come within only 50 to 300 mV of each rail (Figure 1).

  Single-supply-amplifier, rail-to-rail-output ads can give a false sense of security. Figure 1 shows a typical single-supply amplifier’s output swing as you drive the output to the rails.

  The amplifier’s linearity starts to degrade long before reaching the output-swing maximums, and the amplifier output never reaches either rail.

  The conditions of the dc-open-loop-gain specification define the amplifier’s linear operating output range. The dc open loop gain in decibels is 20 log(ΔVOUT/ΔVOS), where VOUT is the output voltage and VOS is the input offset voltage. When you drive the output high, VH is the maximum voltage level at the output in the dc-open-loop-gain measurement. VOH is the absolute maximum voltage level with respect to VDD (drain-to-drain voltage) that the output can reach. VL is the minimum voltage level at the output in the dc-open-loop-gain measurement, and VOL is the absolute minimum voltage level that the output can reach. VH is less than VOH, and VL is greater than VOL.

 

  From a signal-chain perspective, you can see an op amp’s output limitations to swinging rail to rail when the op amp is driving an ADC. The FFT plot in Figure 2a shows the amplifier/ADC-combination response to a 1-kHz signal in a 5V system. The amplifier’s ty

 

pical closed-loop bandwidth is about 3 MHz with a typical slew rate of 2.3V/µsec. The amplifier output voltage swings from 140 mV to 4.66V. In this 5V-supply system, the headroom between the signal and rails is 140 mV. For this amplifier, the VOL minimum specification is 15 mV above ground. The VOH maximum specification is VDD–20 mV.

 

  Figure 2a illustrates the nonlinearity-output-stage effects with a single-supply CMOS amplifier by showing distortion at 2, 3, and 4 kHz and so on. By reducing the amplifier’s output signal to 272 mV from each rail, the data looks perfect with only the ADC distortion (Figure 2b).

  When using a single-supply amplifier, read the fine print! Some single-supply amps have output-stage charge pumps, allowing the amplifier’s output swing to go to and well beyond the power-supply rails. In every case, read your data sheet and refer to the conditions on the open-loop-gain test.

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 狠狠色综合网站久久久久久久 | 国产免费一级高清淫日本片 | 欧美性受xxxx喷水性欧洲 | a毛片免费全部在线播放毛 a毛片免费全部播放毛 | 日韩色在线 | 欧美一区二区三区不卡片 | 国产日韩欧美第一页 | porefree日本中国 | 国产16页| 伊人激情在线 | 九九热久久免费视频 | 国产精品久久免费观看 | 日韩欧免费一区二区三区 | 一个人在线看的免费视频 | 日韩第一 | 日韩美女va在线毛片免费知 | 一区二区免费在线观看 | 人操人碰 | 一级特黄aaa大片在线观看 | 欧美激情精品久久久久久大尺度 | 欧美一区二区免费 | 亚洲综合欧美日韩 | 欧美日韩一区二区三区高清不卡 | 377p亚洲欧洲日本大胆色噜噜 | 性欧美videofreel另类 | 日日日日人人人夜夜夜2017 | 久久青草国产精品一区 | 国产制服丝袜在线观看 | 另类免费视频 | 在线亚洲精品国产成人二区 | 最近最新中文字幕免费大全3 | 黄色三级一级片 | 97人洗澡人人澡人人爽人人 | 东京加勒比中文字幕波多野结衣 | 国产亚洲综合成人91精品 | 一个人免费观看视频www | 久久婷婷午色综合夜啪 | 床上毛片 | 欧美成人午夜免费完成 | 亚洲aⅴ男人的天堂在线观看 | 日本免费全黄一级裸片视频 |