數字圖像處理在橋梁結構變形檢測的應用研究
信息技術與網絡安全
柳勝超,王夏黎,張 琪,趙嘉興
(長安大學 信息工程學院,陜西 西安710064)
摘要: 針對大型橋梁在施工階段和運營期間發生結構變形問題,目前缺乏自動化、高頻、實時與長期并且精確的檢測手段。在數字圖像處理與深度學習理論基礎下,提出一種適用于大型橋梁結構變形的非接觸式檢測方法,并以此方法研發系統,可以對橋梁多個目標結構進行同步動態監測。該方法首先通過高分辨率攝影設備獲取橋梁結構的動態視頻序列圖像;其次對圖像進行預處理去除天氣等外部因素對圖像的影響;然后提取圖像ROI確定待處理的具體橋梁結構部位;最后對深度學習中YOLOv3算法進行改進并結合改進后的SURF算法實現橋梁結構的變形檢測。實驗結果表明,算法檢測速度在20~30 f/s之間,目標距離100 m時,算法檢測精度在0.3 mm以內,檢測精度高,可有效反映橋梁結構變形情況。
中圖分類號: TP391.41
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.02.005
引用格式: 柳勝超,王夏黎,張琪,等. 數字圖像處理在橋梁結構變形檢測的應用研究[J].信息技術與網絡安全,2021,40(2):24-32.
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.02.005
引用格式: 柳勝超,王夏黎,張琪,等. 數字圖像處理在橋梁結構變形檢測的應用研究[J].信息技術與網絡安全,2021,40(2):24-32.
Application research of digital image processing in deformation detection of bridge structures
Liu Shengchao,Wang Xiali,Zhang Qi,Zhao Jiaxing
(School of Information Engineering,Chang′an University,Xi′an 710064,China)
Abstract: In view of the structural deformation of large bridges during construction and operation, there is currently a lack of automated, high-frequency, real-time, long-term and accurate detection methods. Based on the theory of digital image processing and deep learning, this paper proposes a non-contact detection method suitable for large-scale bridge structure deformation, and uses this method to develop a system that can simultaneously dynamically monitor multiple target structures of the bridge. This method firstly obtains dynamic video sequence images of the bridge structure through high-resolution photography equipment; secondly, it preprocesses the image to remove the influence of external factors such as weather on the image; then it extracts the image ROI to determine the specific bridge structure to be processed; finally, the YOLOv3 algorithm is improved and combined with the improved SURF algorithm to realize the deformation detection of the bridge structure. Experimental results show that the detection speed of the algorithm is between 20 fps and 30 fps, when the target distance is 100 m, the detection accuracy of the algorithm is within 0.3 mm, and the detection accuracy is high, which effectively reflects the deformation of the bridge structure.
Key words : software engineering;bridge structure deformation;digital image processing;remote detection;deep learning;SURF algorithm
0 引言
橋梁在陸路交通中屬于一種特殊的道路結構,是日常生活的基礎設施之一。自古至今,橋梁作為交通樞紐中較為重要的一環,其安全性一直是人們關注的焦點。橋梁安全性主要分為建設安全性與使用安全性。基于各種因素,橋梁在施工與運營期間會出現結構變形[1-2],橋梁變形程度能夠直接反映出橋梁的健康狀況。隨著國民經濟的日益增長和近現代交通技術的不斷發展,橋梁的體積越來越大,橋梁結構越來越復雜,橋梁的應用環境越來越多樣。因此在橋梁建設過程中,如何實時地檢測橋梁的變形程度,以確保橋梁工程的安全就成為橋梁建設的一項重要技術。
本文詳細內容請下載:http://m.viuna.cn/resource/share/2000003375
作者信息:
柳勝超,王夏黎,張 琪,趙嘉興
(長安大學 信息工程學院,陜西 西安710064)
此內容為AET網站原創,未經授權禁止轉載。