基于深度級聯網絡的入侵檢測算法研究 | |
所屬分類:技術論文 | |
上傳者:aetmagazine | |
文檔大小:562 K | |
標簽: 入侵檢測 特征提取 卷積神經網絡 | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:針對海量多源異構的網絡流量數據難以用傳統的機器學習算法有效提取特征,分類效果差的問題,提出一種基于深度級聯網絡的入侵檢測算法,利用神經網絡自動學習特征的能力,將卷積神經網絡和長短期記憶網絡結合起來,同時提取流量數據的空間特征和時序特征,并采用softmax進行分類,提高模型的檢測性能和泛化能力。最后將該算法在KDDCUP99數據集上進行驗證,實驗結果表明,該入侵檢測模型相較于SVM、DBN等算法有更高的檢測率,準確率可達95.39%,誤報率僅0.96%,有效提高了入侵檢測分類性能。 | |
現在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統工程研究所版權所有 京ICP備10017138號-2